Advertisement

Designs, Codes and Cryptography

, Volume 50, Issue 1, pp 115–133 | Cite as

A variant of Boneh-Franklin IBE with a tight reduction in the random oracle model

  • Jean-Sébastien CoronEmail author
Article

Abstract

The first practical identity based encryption (IBE) scheme was published by Boneh and Franklin at Crypto 2001, based on the elliptic curve pairing. Since that time, many other IBE schemes have been published. In this paper, we describe a variant of Boneh-Franklin with a tight reduction in the random oracle model. Our new scheme is quite efficient compared to existing schemes; moreover, upgrading from Boneh-Franklin to our new scheme is straightforward.

Keywords

Identity-based encryption Tight security Pairing 

Mathematics Subject Classification (2000)

94A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attrapadung N., Chevallier-Mames B., Furukawa J., Gomi T., Hanaoka G., Imai H., Zhang R.: Efficient Identity-Based Encryption with Tight Security Reduction. Cryptology ePrint Archive, Report 2005/320 (2005).Google Scholar
  2. 2.
    Bellare M., Rogaway P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the First Annual Conference on Computer and Communications Security, ACM (1993).Google Scholar
  3. 3.
    Boneh D., Franklin M.K.: Identity-based encryption from the Weil pairing. In: Proceedings of Crypto (2001).Google Scholar
  4. 4.
    Boneh D., Boyen X.: Efficient selective-ID secure identity based encryption without random oracles. In: Proceedings of Eurocrypt (2004).Google Scholar
  5. 5.
    Boneh D., Boyen X.: Secure Identity Based Encryption without random oracles. In: Proceedings of Crypto’04, LNCS, vol. 3152 (2004).Google Scholar
  6. 6.
    Canetti R., Goldreich O., Halevi S.: The random oracle methodology, revisited. In: STOC’98, ACM (1998).Google Scholar
  7. 7.
    Fujisaki E., Okamoto T.: Secure integration of asymmetric and symmetric encryption schemes. In: Crypto’99, LNCS, vol. 1666, Springer-Verlag, pp. 537–554 (1999).Google Scholar
  8. 8.
    Galindo D.: Boneh-Franklin identity based encryption revisited. In: Proceedings of ICALP 2005, LNCS, vol. 3580 (2005).Google Scholar
  9. 9.
    Gentry C.: Practical identity-based encryption without random oracles. In: Proceedings of Eurocrypt, LNCS, vol. 4004 (2006).Google Scholar
  10. 10.
    Katz J., Wang N.: Efficiency improvements for signature schemes with tight security reductions. In: ACM Conference on Computer and Communications Security, pp. 155–164 (2003).Google Scholar
  11. 11.
    Kiltz E.: On the Limitations of the spread of an IBE-to-PKE transformation. In: Proceedings of PKC, pp. 274–289 (2006).Google Scholar
  12. 12.
    Libert B., Quisquater J.J.: Identity based encryption without redundancy. In: Proceedings of ACNS, LNCS, vol. 3531 (2005).Google Scholar
  13. 13.
    Shamir A.: Identity-based cryptosystems and signature schemes. In: Proceedings of Crypto’84, Springer-Verlag (1985).Google Scholar
  14. 14.
    Shoup V.: Sequences of games: a tool for taming complexity in security proofs, manuscript, Nov. 30, 2004. Available at http://shoup.net/papers/.
  15. 15.
    Waters B.: Efficient Identity-Based Encryption without random oracles. In: Proceedings of Eurocrypt (2005).Google Scholar
  16. 16.
    Yang P., Kitagawa T., Hanaoka G., Zhang R., Matsuura K., Imai H.: Applying Fujisaki-Okamoto to identity-based encryption. In Fossorier M. et al. (eds.) AAECC 2006, LNCS, vol. 3857, pp. 183–192. Springer-Verlag (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.University of LuxembourgLuxembourg CityLuxembourg

Personalised recommendations