Designs, Codes and Cryptography

, Volume 49, Issue 1–3, pp 341–346 | Cite as

On Boolean functions with the sum of every two of them being bent

  • Christian BeyEmail author
  • Gohar M. Kyureghyan


A set of Boolean functions is called a bent set if the sum of any two distinct members is a bent function. We show that any bent set yields a homogeneous system of linked symmetric designs with the same design parameters as those systems derived from Kerdock sets. Further we observe that there are bent sets of size equal to the square root of the Kerdock set size which consist of Boolean functions with arbitrary degrees.


Bent function Kerdock set System of linked symmetric designs Association scheme 

AMS Classifications

11T71 05B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bending T.D., Fon-Der-Flaas D.: Crooked functions, bent functions, and distance regular graphs. Electron. J. Combin. 5 (1998) Research Paper 34, 14 pp (electronic).Google Scholar
  2. 2.
    Cameron, P.J.: On groups with several doubly-transitive permutation representations. Math. Z. 128, 1–14 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cameron, P.J., Seidel, J.J.: Quadratic forms over GF(2). Indag. Math. 35, 1–8 (1973)MathSciNetGoogle Scholar
  4. 4.
    Cameron, P.J., van Lint, J.H.: Designs, Graphs, Codes and Their Links. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  5. 5.
    Carlet C.: Vectorial Boolean functions for cryptography. In: Crama Y., Hammer P. (eds.) Boolean Methods and Models. Cambridge University Press (to appear).Google Scholar
  6. 6.
    Carlet C.: Boolean functions for cryptography and error correcting codes. In: Crama Y., Hammer P. (eds.) Boolean Methods and Models. Cambridge University Press (to appear).Google Scholar
  7. 7.
    van Dam, E.R.: Three-class association schemes. J. Alg. Combin. 10, 69–107 (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    Delsarte P.: An algebraic approach to the association schemes of coding theory. Phillips Res. Repts. Suppl. 10 (1973).Google Scholar
  9. 9.
    Mathon, R.: The systems of linked 2–(16, 6, 2) designs. Ars Combin. 11, 131–148 (1981)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Noda, R.: On homogeneous systems of linked symmetric designs. Math. Z. 138, 15–20 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rothaus, O.S.: On “bent” functions. J. Combin. Theory Ser. A 20, 300–305 (1976)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Fakultät für MathematikOtto-von-Guericke Universität MagdeburgMagdeburgGermany

Personalised recommendations