Advertisement

Designs, Codes and Cryptography

, Volume 49, Issue 1–3, pp 289–305 | Cite as

Semantic security for the McEliece cryptosystem without random oracles

  • Ryo Nojima
  • Hideki Imai
  • Kazukuni Kobara
  • Kirill MorozovEmail author
Article

Abstract

In this paper, we formally prove that padding the plaintext with a random bit-string provides the semantic security against chosen plaintext attack (IND-CPA) for the McEliece (and its dual, the Niederreiter) cryptosystems under the standard assumptions. Such padding has recently been used by Suzuki, Kobara and Imai in the context of RFID security. Our proof relies on the technical result by Katz and Shin from Eurocrypt ’05 showing “pseudorandomness” implied by the learning parity with noise (LPN) problem. We do not need the random oracles as opposed to the known generic constructions which, on the other hand, provide a stronger protection as compared to our scheme—against (adaptive) chosen ciphertext attack, i.e., IND-CCA(2). In order to show that the padded version of the cryptosystem remains practical, we provide some estimates for suitable key sizes together with corresponding workload required for successful attack.

Keywords

Semantic security Cryptographic standard model McEliece cryptosystem Niederreiter cryptosystem 

AMS Classification

11T71 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare M., Rogaway P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of CCS, pp. 62–73 (1993).Google Scholar
  2. 2.
    Bellare M., Rogaway P.: Optimal asymmetric encryption – how to encrypt with RSA. In: EUROCRYPT ’94, LNCS vol. 950, pp. 92–111 (1995).Google Scholar
  3. 3.
    Berlekamp E., McEliece R.J., van Tilborg H.C.A. (1978). On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24, 384–386zbMATHCrossRefGoogle Scholar
  4. 4.
    Blum A., Kalai A., Wasserman H. (2003). Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4): 506–519CrossRefMathSciNetGoogle Scholar
  5. 5.
    Canteaut A., Chabaud F. (1998). A new algorithm for finding minimum-weight words in a linear code: application to primitive narrow-sense BCH codes of length 511. IEEE Trans. Inform. Theory 44(1): 367–378zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cayrel P.-L., Gaborit P., Girault M.: Identity based identification and signature schemes using correcting codes. In: WCC ’07, pp. 69–78 (2007).Google Scholar
  7. 7.
    Courtois N., Finiasz M., Sendrier N.: How to achieve a McEliece-based digital signature scheme. In: Asiacrypt ’01, LNCS vol. 2248, pp. 157–174 (2001).Google Scholar
  8. 8.
    Cramer R., Shoup V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Crypto ’98, LNCS vol. 1462, pp. 13–25 (1998).Google Scholar
  9. 9.
    El Gamal T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory 31(4): 469–472zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Engelbert D., Overbeck R., Schmidt A. (2007). A summary of McEliece-type cryptosystems and their security. J. Math. Cryptol. 1(2): 151–199zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fischer J.-B., Stern J.: An efficient pseudo-random generator provably as secure as syndrome decoding. In: Eurocrypt ’96, LNCS vol. 1070, pp. 245–255 (1996).Google Scholar
  12. 12.
    Fujisaki E., Okamoto T.: Secure integration of asymmetric and symmetric encryption schemes. In: Crypto ’99, LNCS vol. 1666, pp. 537–554 (1999).Google Scholar
  13. 13.
    Goldreich O.: Foundation of Cryptography, Basic Tools. Cambridge University Press (2001).Google Scholar
  14. 14.
    Goldreich O., Levin L.A.: A hard-core predicate for all one-way functions. In: STOC ’89, pp. 25–32 (1989).Google Scholar
  15. 15.
    Goldwasser S., Micali S. (1984). Probabilistic encryption. J. Comp. Syst. Sci. 28, 270–299zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Katz J., Shin J.S.: Parallel and concurrent security of the HB and HB+ protocols. In: Eurocrypt ’06, LNCS vol. 4004, pp. 73–87 (2006).Google Scholar
  17. 17.
    Kabatiansky G., Krouk E., Semenov S.: Error Correcting Codes and Security for Data Networks. Wiley (2005).Google Scholar
  18. 18.
    Kobara K., Imai H.: Semantically secure McEliece public-key cryptosystems – conversions for McEliece PKC. In: PKC ’01, LNCS vol. 1992, pp. 19–35 (2001).Google Scholar
  19. 19.
    Leon J.S. (2001). A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans. Inform. Theory 34(5): 1354–1359CrossRefMathSciNetGoogle Scholar
  20. 20.
    Li Y.X., Deng R.H., Wang X.M. (1994). The equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Trans. Inform. Theory 40, 271–273zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Loidreau P., Sendrier N. (2001). Weak keys in the McEliece public-key cryptosystem. IEEE Trans. Inform. Theory 47(3): 1207–1211zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    McEliece R.J.: The theory of information and coding. In: The Encyclopedia of Mathematics and Its Applications, vol. 3. Addison-Wesley (1977).Google Scholar
  23. 23.
    McEliece R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Network Prog. Rep. (1978).Google Scholar
  24. 24.
    Niederreiter H. (1986). Knapsack-type cryptosystems and algebraic coding theory. Prob. Control Inform. Theory 15(2): 159–166zbMATHMathSciNetGoogle Scholar
  25. 25.
    Paillier P.: Public-key cryptosystem based on discrete logarithm residues. In: Eurocrypt ’99, LNCS vol. 1592, pp. 223–238 (1999).Google Scholar
  26. 26.
    Petrank E., Roth R.M. (1997). Is code equivalence easy to decide?. IEEE Trans. Inform. Theory 43, 1602–1604zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Pointcheval D.: Chosen-ciphertext security for any one-way cryptosystem. In: PKC ’00, LNCS vol. 1751, pp. 129–146 (2000).Google Scholar
  28. 28.
    Sendrier N. (2000). Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE Trans. Inform. Theory 46(4): 1193–1203zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Shoup V.: OAEP reconsidered. In: Crypto ’01, LNCS vol. 2139, pp. 239–259 (2001).Google Scholar
  30. 30.
    Stern J.: A method for finding codewords of small weight. In: Coding Theory and Applications, LNCS vol. 388, pp. 106–113 (1989).Google Scholar
  31. 31.
    Suzuki M., Kobara K., Imai H.: Privacy enhanced and light weight RFID system without tag synchronization and exhaustive search. In: IEEE SMC (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ryo Nojima
    • 1
  • Hideki Imai
    • 2
    • 3
  • Kazukuni Kobara
    • 3
  • Kirill Morozov
    • 3
    Email author
  1. 1.Information Security Research CenterNational Institute of Information and Communications Technology (NICT)TokyoJapan
  2. 2.Department of Electrical, Electronic and Communication EngineeringChuo UniversityTokyoJapan
  3. 3.Research Center for Information Security (RCIS)National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan

Personalised recommendations