Designs, Codes and Cryptography

, Volume 45, Issue 3, pp 317–333 | Cite as

Towards generating secure keys for braid cryptography

Article

Abstract

Braid cryptosystem was proposed in CRYPTO 2000 as an alternate public-key cryptosystem. The security of this system is based upon the conjugacy problem in braid groups. Since then, there have been several attempts to break the braid cryptosystem by solving the conjugacy problem in braid groups. In this article, we first survey all the major attacks on the braid cryptosystem and conclude that the attacks were successful because the current ways of random key generation almost always result in weaker instances of the conjugacy problem. We then propose several alternate ways of generating hard instances of the conjugacy problem for use braid cryptography.

Keywords

Braid groups Conjugacy problem Braid cryptography 

AMS Classifications

94A60 20F36 20F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshel I., Anshel M. and Goldfeld D. (1999). An algebraic method for public-key cryptography. Math. Res. Lett. 6: 287–291 MATHMathSciNetGoogle Scholar
  2. 2.
    Birman J.S.: Braids, links and mapping class groups, Annals of Math. Study 82, Princeton University Press (1974).Google Scholar
  3. 3.
    Birman J.S., Gebhardt V., González-Mensese J.: Conjugacy in Garside groups I: Cyclings, Powers, and Rigidity, arXiv:math.GT/0605230Google Scholar
  4. 4.
    Birman J.S., Ko K.H. and Lee S.J. (2001). The infimum, supremum, and geodesic length of a braid conjugcy class. Adv. Math. 164(1): 41–56 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cha J.C., Ko K.H., Lee S.J., Han J.W., Cheon J.H.: An efficient implementation of braid groups. Advances in Cryptology: Proceedings of ASIACRYPT 2001, Lecture Notes in Computer Science, Springer-Verlag, vol 2248 pp. 144–156 Springer-verlag (2001).Google Scholar
  6. 6.
    Cheon J.H., Jun B.: A polynomial time algorithm for the braid Diffie-Hellman conjugacy problem. Advances in Cryptology: Proceedings of CRYPTO 2003, Lecture Notes in Computer Science, vol 2729, pp. 212–225. Springer-Verlag-2003.Google Scholar
  7. 7.
    Dehornoy P. (2004). Braid-based cryptography. Contemp. Math. 360: 5–33 MathSciNetGoogle Scholar
  8. 8.
    El-Rifai E.A and Morton H.R. (1994). Algorithms for positive braids. Quart. J. Math. Oxford Ser. 45(2): 479–497 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Franco N. and Gonazález-Meneses J. (2003). Conjugacy problem for braid groups and Garside groups. J. Algebra 266(1): 112–132 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Garber D., Kaplan S., Teicher M., Tsaban B., Vishne U.: Length-based conjugacy search in the Braid groups. http://arXiv.org/abs/math.GR/0209267Google Scholar
  11. 11.
    Garside F.A. (1969). The braid group and other groups. Quart. J. Math. Oxford Ser. 20(2): 235–254 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gebhardt V.: A new approach to the conjugacy problem in Garside groups, to appear in J. Algebra, (2005).Google Scholar
  13. 13.
    Gebhardt V. (2006). Conjugacy search in braid groups, from a braid-based cryptography point of view, applicable algebra in engineering. commun computi. 17(3–4): 219–238 MATHMathSciNetGoogle Scholar
  14. 14.
    Hofheinz D., Steinwandt R.: A practical attack on some braid group based cryptographic primitives, 6th International Workshop on Practice and Theory in Public Key Cryptography: Proceedings of PKC 2003, Lecture Notes in Computer Science, vol 2567, pp. 187–198. Springer Verlag (2002).Google Scholar
  15. 15.
    Hughes J.: A linear algebraic attack on the AAFG1 braid group cryptosystem, ACISP 2002, Lecture Notes in Computer Science, vol 2384, pp. 176–189. Springer-Verlag (2002).Google Scholar
  16. 16.
    Hughes J., Tannenbaum A.: Length-based attacks for certain group based encryption rewriting systems, Workshop SECI02, Sécurité de la Communication sur Internet, Sept. 2002.Google Scholar
  17. 17.
    Ko K.H., Choi D.H., Cho M.S., Lee J.W.: New signature scheme using conjugacy problem, Available at: http://eprint.iacr.org/2002/168.pdfGoogle Scholar
  18. 18.
    Ko K.H., Lee J.W.: A fast algorithm to the conjugacy problem on generic braids, to appear in the proceedings of Knot theory for Scientific Objects, March, 2006, Osaka, Japan.Google Scholar
  19. 19.
    Ko K.H., Lee J.W.: A polynomial-time solution to the reducibility problem, arXiv:math.GT/0610746.Google Scholar
  20. 20.
    Ko K.H., Lee S.J., Cheon J.H., Han J.W., Kang J.S., Park C.S.: New public-key cryptosystem using braid groups. Advances in Cryptology: Proceedings of CRYPTO 2000. Lecture Notes in Computer Science, vol 1880, pp. 166–183. Springer-Verlag (2000).Google Scholar
  21. 21.
    Lee E. (2004). Braid groups in cryptology. IEICE Trans. Fundamentals, E 87A(5): 986–992 Google Scholar
  22. 22.
    Lee S.J.: Algorithmic solutions to decision problems in the braid groups, PhD Thesis, Korea Advanced Institute of Science and Technology (2000).Google Scholar
  23. 23.
    Lee S.J., Lee E.K.: Potential weakness of the commutator key agreement protocol based on braid groups, Proceedings of EUROCRYPT 2002, Lecture Notes in Computer Science, vol 2332, pp. 14–28. Springer-Verlag (2002).Google Scholar
  24. 24.
    Lee E., Park J.H.: Cryptanalysis of the public-key encryption based on braid groups, Advances in Cryptology: Proceedings of EUROCRYPT 2003, Lecture Notes in Computer Science, vol 2565, pp. 477–490. Springer-Verlag (2003).Google Scholar
  25. 25.
    Maffre S. (2006). A weak key test for braid based cryptography. Designs Code. Cryptogr. 39(3): 347–373 MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Myasnikov A., Shpilrain V., Ushakov A.: A practical heuristic attack on the Ko-Lee key exchange protocol. Advances in Cryptology: Proceedings of CRYPTO 2005, Lecture Notes in Computer Science, vol 3621, pp. 86–96. Springer-Verlag (2005).Google Scholar
  27. 27.
    Sibert H.: Algorithmique des tresses, PhD Thesis, Universite de Caen (2003).Google Scholar
  28. 28.
    Sibert H., Dehornoy P. and Girault M. (2006). Entity authentication schemes using braid word reduction. Discrete Applied Math. 154(2): 420–436 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations