Designs, Codes and Cryptography

, Volume 45, Issue 2, pp 213–217

A search algorithm for linear codes: progressive dimension growth

Article

Abstract

This paper presents an algorithm, called progressive dimension growth (PDG), for the construction of linear codes with a pre-specified length and a minimum distance. A number of new linear codes over GF(5) that have been discovered via this algorithm are also presented.

Keywords

New codes Minimum distance bounds Search algorithm Progressive dimension Growth (PDG) 

AMS Classification

94B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aydin N, Siap I and Ray-Chaudhuri DK (2001). The structure of 1-generator quasi-twisted codes and new linear codes. Des Codes Cryptogr 24(3): 313–326 MATHCrossRefMathSciNetGoogle Scholar
  2. (2006). Discovering mathematics with magma: reducing the abstract to concrete. Springer, Berlin MATHGoogle Scholar
  3. Brouwer AE. Bounds (Bounds on the minimum distance of linear codes). http://www.win.tue.nl/aeb/voorlincod.htmlGoogle Scholar
  4. Chen EZ (2007). New quasi-cyclic codes from simpex codes. IEEE Trans Inform Theory 53(1): 1193 CrossRefMathSciNetGoogle Scholar
  5. Daskalov R, Gulliver TA and Metodieva E (1999). New ternary linear codes. IEEE Trans Inform Theory 45(5): 1687–1688 MATHCrossRefMathSciNetGoogle Scholar
  6. Daskalov R and Hristov P (2003). New quasi-twisted degenerate ternary linear codes. IEEE Trans Inform Theory 49(9): 2259–2263 CrossRefMathSciNetGoogle Scholar
  7. Grassl M. Bounds on the minimum distance of linear codes. http://www.codetables.deGoogle Scholar
  8. Grassl M, White G (2005) New codes from chains of quasi-cyclic codes. In: Proceedings of IEEE international symposium on information theory (ISIT 2005), Adelaide, Australia, September 2005, pp 2095–2099Google Scholar
  9. Gulliver TA and Östergard PRJ (2000). New binary linear codes. Ars Combinatoria 56: 105–112 MATHMathSciNetGoogle Scholar
  10. MacWilliams FJ and Sloane NJA (1977). The theory of error correcting codes. North Holland, Amsterdam MATHGoogle Scholar
  11. MAGMA computer algebra system. http://magma.maths.usyd.edu.au/magma/MagmaInfo.htmlGoogle Scholar
  12. Siap I, Aydin N and Ray-Chaudhuri DK (2000). New ternary quasi-cyclic codes with better minimum distances. IEEE Trans Inform Theory 46(4): 1554–1558 MATHCrossRefMathSciNetGoogle Scholar
  13. Tsfasman MA and Vlǎdut SG (1991). Algebraic geometry codes. Kluwert, Dordrecht Google Scholar
  14. Vardy A (1997). The intractability of computing the minimum distance of a code. IEEE Trans Inform Theory 43(6): 1757–1766 MATHCrossRefMathSciNetGoogle Scholar
  15. White G (preprint) An improved minimum weight algorithm for quasi-cyclic and quasi-twisted codesGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsKenyon CollegeGambierUSA

Personalised recommendations