Designs, Codes and Cryptography

, Volume 44, Issue 1–3, pp 293–305

On 3-chromatic distance-regular graphs

  • Aart Blokhuis
  • Andries E. Brouwer
  • Willem H. Haemers
Open Access
Article

Abstract

We give some necessary conditions for a graph to be 3-chromatic in terms of the spectrum of the adjacency matrix. For all known distance-regular graphs it is determined whether they are 3-chromatic. A start is made with the classification of 3-chromatic distance-regular graphs, and it is shown that such graphs, if not complete 3-partite, must have λ ≤ 1.

Keywords

Distance-regular graphs Chromatic number 

AMS Classification

05E30 05C15 

References

  1. Brouwer AE (1982). The uniqueness of the near hexagon on 729 points. Combinatorica 2: 333–340 MATHCrossRefGoogle Scholar
  2. Brouwer AE and Wilbrink HA (1983). The structure of near polygons with quads. Geom Dedicata 14: 145–176 MATHCrossRefGoogle Scholar
  3. Brouwer AE, Cohen AM and Neumaier A (1989). Distance-regular graphs. Springer-Verlag, Berlin, Heidelbeg, Newyork MATHGoogle Scholar
  4. Brouwer AE, Cohen AM, Hall JI and Wilbrink HA (1994). Near polygons and Fischer spaces. Geom Dedicata 49: 349–368 MATHCrossRefGoogle Scholar
  5. Coolsaet K and Degraer J (2005). A computer-assisted proof of the uniqueness of the Perkel graph. Des Codes Cryptogr 34: 155–171 MATHCrossRefGoogle Scholar
  6. Cvetković DM, Doob M, Sachs H (1980) Spectra of graphs: theory and applications. Deutscher Verlag der Wissenschaften, Berlin; Academic Press, New York (Third edition, Johann Abrosius Barth Verlag, Heidelberg-Leipzig, 1995)Google Scholar
  7. De Bruyn B (2006). Near polygons. Birkhäuser Verlag, Basel Boston Berlin MATHGoogle Scholar
  8. De Clerck F and Van Maldeghem H (1995). Some classes of rank 2 geometries: handbook of incidence geometry. Elsevier, Amsterdam, pp, 433–475 Google Scholar
  9. De Wispelaere A (2005) Ovoids and spreads of finite classical generalized hexagons and applications. Ph.D. thesis, Ghent UniversityGoogle Scholar
  10. El Zahar M and Sauer NW (1985). The chromatic number of the product of two 4-chromatic graphs is 4. Combinatorica 5: 121–126 MATHCrossRefGoogle Scholar
  11. Fiala NC, Haemers WH (2006) 5-chromatic strongly regular graphs. Discrete Math 306:3083–3096MATHCrossRefGoogle Scholar
  12. Fon-Der-Flaass DG (1993). There exists no distance-regular graph with intersection array (5,4,3;1,1,2). Eur J Combin 14: 409–412 MATHCrossRefGoogle Scholar
  13. Garey MR, Johnson DS and Stockmeyer LJ (1976). Some NP-complete graph problems. Theor Comput Sci 1: 237–267 MATHCrossRefGoogle Scholar
  14. Godsil CD (2004–2006) Interesting graphs and their colourings, unpublished notes 2004–2006. http://quoll.uwaterloo.ca/pstuff/colours.pdfGoogle Scholar
  15. Haemers WH (1979) Eigenvalue techniques in design and graph theory. Ph.D. thesis, Eindhoven University of Technology (http://alexandria.tue.nl/extra3/proefschrift/PRF3A/7909413.pdf) Also: Math Centre Tract 121, Mathematical Centre, Amsterdam, 1980Google Scholar
  16. Hoffman AJ (1970). On eigenvalues and colorings of graphs. In: Harris, B (eds) Graph theory and its applications, pp 79–91. Acad. Press, New York Google Scholar
  17. Ivanov AA and Shpectorov SV (1990). The P-geometry for M 23 has no nontrivial 2-coverings. Eur. J Combin 11: 373–379 MATHGoogle Scholar
  18. Payan C (1992). On the chromatic number of cube-like graphs. Discrete Math 103: 271–277 MATHCrossRefGoogle Scholar
  19. Sokolová M (1987). The chromatic number of extended odd graphs is four.. Časopis Pěst Mat 112: 308–311 MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Aart Blokhuis
    • 1
  • Andries E. Brouwer
    • 1
  • Willem H. Haemers
    • 2
  1. 1.Department of MathematicsTechnological University EindhovenEindhovenThe Netherlands
  2. 2.Department of Econometrics & O.R.Tilburg UniversityTilburgThe Netherlands

Personalised recommendations