Designs, Codes and Cryptography

, Volume 44, Issue 1–3, pp 293–305 | Cite as

On 3-chromatic distance-regular graphs

  • Aart Blokhuis
  • Andries E. Brouwer
  • Willem H. HaemersEmail author
Open Access


We give some necessary conditions for a graph to be 3-chromatic in terms of the spectrum of the adjacency matrix. For all known distance-regular graphs it is determined whether they are 3-chromatic. A start is made with the classification of 3-chromatic distance-regular graphs, and it is shown that such graphs, if not complete 3-partite, must have λ ≤ 1.


Distance-regular graphs Chromatic number 

AMS Classification

05E30 05C15 


  1. Brouwer AE (1982). The uniqueness of the near hexagon on 729 points. Combinatorica 2: 333–340 zbMATHCrossRefGoogle Scholar
  2. Brouwer AE and Wilbrink HA (1983). The structure of near polygons with quads. Geom Dedicata 14: 145–176 zbMATHCrossRefGoogle Scholar
  3. Brouwer AE, Cohen AM and Neumaier A (1989). Distance-regular graphs. Springer-Verlag, Berlin, Heidelbeg, Newyork zbMATHGoogle Scholar
  4. Brouwer AE, Cohen AM, Hall JI and Wilbrink HA (1994). Near polygons and Fischer spaces. Geom Dedicata 49: 349–368 zbMATHCrossRefGoogle Scholar
  5. Coolsaet K and Degraer J (2005). A computer-assisted proof of the uniqueness of the Perkel graph. Des Codes Cryptogr 34: 155–171 zbMATHCrossRefGoogle Scholar
  6. Cvetković DM, Doob M, Sachs H (1980) Spectra of graphs: theory and applications. Deutscher Verlag der Wissenschaften, Berlin; Academic Press, New York (Third edition, Johann Abrosius Barth Verlag, Heidelberg-Leipzig, 1995)Google Scholar
  7. De Bruyn B (2006). Near polygons. Birkhäuser Verlag, Basel Boston Berlin zbMATHGoogle Scholar
  8. De Clerck F and Van Maldeghem H (1995). Some classes of rank 2 geometries: handbook of incidence geometry. Elsevier, Amsterdam, pp, 433–475 Google Scholar
  9. De Wispelaere A (2005) Ovoids and spreads of finite classical generalized hexagons and applications. Ph.D. thesis, Ghent UniversityGoogle Scholar
  10. El Zahar M and Sauer NW (1985). The chromatic number of the product of two 4-chromatic graphs is 4. Combinatorica 5: 121–126 zbMATHCrossRefGoogle Scholar
  11. Fiala NC, Haemers WH (2006) 5-chromatic strongly regular graphs. Discrete Math 306:3083–3096zbMATHCrossRefGoogle Scholar
  12. Fon-Der-Flaass DG (1993). There exists no distance-regular graph with intersection array (5,4,3;1,1,2). Eur J Combin 14: 409–412 zbMATHCrossRefGoogle Scholar
  13. Garey MR, Johnson DS and Stockmeyer LJ (1976). Some NP-complete graph problems. Theor Comput Sci 1: 237–267 zbMATHCrossRefGoogle Scholar
  14. Godsil CD (2004–2006) Interesting graphs and their colourings, unpublished notes 2004–2006. Scholar
  15. Haemers WH (1979) Eigenvalue techniques in design and graph theory. Ph.D. thesis, Eindhoven University of Technology ( Also: Math Centre Tract 121, Mathematical Centre, Amsterdam, 1980Google Scholar
  16. Hoffman AJ (1970). On eigenvalues and colorings of graphs. In: Harris, B (eds) Graph theory and its applications, pp 79–91. Acad. Press, New York Google Scholar
  17. Ivanov AA and Shpectorov SV (1990). The P-geometry for M 23 has no nontrivial 2-coverings. Eur. J Combin 11: 373–379 zbMATHGoogle Scholar
  18. Payan C (1992). On the chromatic number of cube-like graphs. Discrete Math 103: 271–277 zbMATHCrossRefGoogle Scholar
  19. Sokolová M (1987). The chromatic number of extended odd graphs is four.. Časopis Pěst Mat 112: 308–311 zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Aart Blokhuis
    • 1
  • Andries E. Brouwer
    • 1
  • Willem H. Haemers
    • 2
    Email author
  1. 1.Department of MathematicsTechnological University EindhovenEindhovenThe Netherlands
  2. 2.Department of Econometrics & O.R.Tilburg UniversityTilburgThe Netherlands

Personalised recommendations