Advertisement

Designs, Codes and Cryptography

, Volume 44, Issue 1–3, pp 223–238 | Cite as

What is a design? How should we classify them?

  • R. A. Bailey
  • Peter J. Cameron
Article

Abstract

Design theory crosses the boundary between mathematics and statistics, and includes a wide range of disparate types of design. In this paper we present a classification scheme which aims to include as many important types as possible, based on a balance among concept, representation and use.

Keywords

Block design Incidence Multiset Partition Geometry Chamber system 

AMS Classification

05B99 05B05 62K99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson I (1997). Combinatorial designs and tournaments. Oxford University Press, Oxford zbMATHGoogle Scholar
  2. Atkinson AC and Donev AN (1992). Optimum experimental designs. Oxford University Press, Oxford zbMATHGoogle Scholar
  3. Bailey RA (1999). Choosing designs for nested blocks. Listy Biometryczne 36: 85–126 zbMATHGoogle Scholar
  4. Bailey RA (2004). Association schemes: designed experiments, algebra and combinatorics. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  5. Bailey RA, Cameron PJ, Dobcsányi P, Morgan JP and Soicher LH (2006). Designs on the Web. Discrete Math 306: 3014–3027 zbMATHCrossRefGoogle Scholar
  6. Bailey RA and Speed TP (1986). Rectangular lattice designs: efficiency factors and analysis. Ann Stat 14: 874–895 zbMATHGoogle Scholar
  7. Brouwer AE, van Lint JH (1984) Strongly regular graphs and partial geometries. In: Enumeration and design. Academic Press, Toronto, pp 85–122Google Scholar
  8. Buekenhout F (1979). Diagrams for geometries and groups. J. Combin Theory (A) 27: 121–151 zbMATHCrossRefGoogle Scholar
  9. Cameron PJ (1991) Projective and polar spaces. QMW Maths Notes vol 13. Queen Mary and Westfield College, London. Second edition available at http://www.maths.qmul.ac.uk/∼pjc/pps/Google Scholar
  10. Cameron PJ (ed) Encyclopaedia of design theory, http://designtheory.org/library/encyc/Google Scholar
  11. Colbourn CJ, Dinitz JH (ed) (1996) Handbook of combinatorial designs, 1st edn. Chapman & Hall/CRCGoogle Scholar
  12. Design Theory Resource Server, http://designtheory.org/Google Scholar
  13. Deza M (1992) Perfect matroid designs. In: White N (ed) Matroid applications. Encyc Math Appl vol 40. Cambridge University Press, pp 54–72Google Scholar
  14. Eccleston JA and Russell KG (1975). Connectedness and orthogonality in multi-factor designs. Biometrika 62: 341–345 zbMATHCrossRefGoogle Scholar
  15. Fisher RA (1942). The theory of confounding in factorial experiments in relation to the theory of groups. Ann Eugen 11: 341–353 Google Scholar
  16. Hanaki A, Miyamoto I. Classification of association schemes with small vertices, http://kissme.shinshu-u.ac.jp/as/Google Scholar
  17. Hughes DR (1962) Combinatorial analysis: t-designs and permutation groups. In: Proceedings of the symposium in pure mathematics 6. American Mathematical Society, Providence, Rhode Island, pp 39–41Google Scholar
  18. Hughes DR and Piper FC (1985). Design theory. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  19. John JA and Williams ER (1995). Cyclic and computer-generated designs. Chapman and Hall, London zbMATHGoogle Scholar
  20. Khosrovshahi GB and Tayfeh-Rezaie B (2006). Large sets of t-designs through partitionable sets: a survey. Discrete Math 306: 2993–3004 zbMATHCrossRefGoogle Scholar
  21. La Jolla Covering Repository, http://www.ccrwest.org/cover.htmlGoogle Scholar
  22. Li PC and van Rees GHJ (2002). Lotto design tables. J Combin Designs 10: 335–359 zbMATHCrossRefGoogle Scholar
  23. McSorley JP, Phillips NCK, Wallis WD and Yucas JL (2005). Double arrays, triple arrays and balanced grids. Designs, Codes Cryptogr 35: 21–45 CrossRefGoogle Scholar
  24. Morgan JP, Preece DA and Rees DH (2001). Nested balanced incomplete block designs. Discrete Math 231: 351–389 zbMATHCrossRefGoogle Scholar
  25. Nelder JA (1968). The combination of information in generally balanced designs. J Roy Stat Soc, Ser B 30: 303–311 zbMATHGoogle Scholar
  26. Pasini A (1994). Diagram geometries. Oxford University Press, Oxford zbMATHGoogle Scholar
  27. Preece DA (1976). Non-orthogonal Graeco-Latin designs. In: Casse, LRA and Wallis, WD (eds) Combinatorial Mathematics IV Lecture Notes in Mathematics, vol 560., pp 7–26. Springer, Berlin CrossRefGoogle Scholar
  28. Preece DA (1990). Fifty years of Youden squares: a review. Bull Inst Math Appl 26: 65–75 zbMATHGoogle Scholar
  29. Preece DA and Phillips NCK (1997). A new type of Freeman-Youden rectangle. J Combin Math Combin Comput 25: 65–78 zbMATHGoogle Scholar
  30. Pukelsheim F (1993). Optimal design of experiments. Wiley, New York zbMATHGoogle Scholar
  31. Shah KR and Sinha BK (1989). Theory of optimal designs. Springer, New York zbMATHGoogle Scholar
  32. Soicher LH SOMA Update, http://www.maths.qmul.ac.uk/∼leonard/soma/Google Scholar
  33. Tits J (1974). Buildings of spherical type and finite BN-pairs. Lecture Notes in Math vol 382. Springer-Verlag, Berlin Google Scholar
  34. Williams ER, Patterson HD and John JA (1976). Resolvable designs with two replications. J Roy Stat Soc, Ser B 38: 296–301 zbMATHGoogle Scholar
  35. Yates F (1935) Complex experiments. J Roy Stat Soc, Suppl 2:181–247Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Queen MaryUniversity of LondonLondonUK

Personalised recommendations