Advertisement

Designs, Codes and Cryptography

, Volume 44, Issue 1–3, pp 11–14 | Cite as

A design and a geometry for the group Fi 22

  • P. J. Cameron
  • A. Rudvalis
Article

Abstract

The Fischer group Fi 22 acts as a rank 3 group of automorphisms of a symmetric 2-(14080,1444,148) design. This design does not have a doubly transitive automorphism group, since there is a partial linear space with lines of size 4 defined combinatorially from the design and preserved by its automorphism group. We investigate this geometry and determine the structure of various subspaces of it.

Keywords

Symmetric design Geometry Automorphism group 

AMS Classification

Primary 05B05 Secondary 05B25 Secondary 20B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brouwer AE, van Lint JH (1984) Strongly regular graphs and partial geometries. In: Jackson DM, Vanstone SA (eds) Enumeration and design (Waterloo, Ont., 1982), Academic, Toronto, pp 85–122Google Scholar
  2. 2.
    Cameron PJ, van Lint JH (1991) Designs, graphs, codes, and their links. Cambridge University Press, CambridgezbMATHGoogle Scholar
  3. 3.
    Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA (1985) An ATLAS of finite groups. Oxford Univ. Press, OxfordGoogle Scholar
  4. 4.
    De Clerck F, Van Maldeghem H (1994) On linear representations of (α,β)-geometries. Eur J Combin 15:3–11zbMATHCrossRefGoogle Scholar
  5. 5.
    Dembowski P (1968) Finite geometries. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  6. 6.
    Dempwolff U (2001) Primitive rank 3 groups on symmetric designs. Des Codes Cryptogr 22: 191–207zbMATHCrossRefGoogle Scholar
  7. 7.
    The GAP group (2004) GAP—Groups, Algorithms, Programming, Version 4.4; http://www.gap-system.orgGoogle Scholar
  8. 8.
    Higman DG (1964) Finite permutation groups of rank 3. Math Z 86:145–156zbMATHCrossRefGoogle Scholar
  9. 9.
    Higman G (1969) On the simple group of D. G. Higman and C. C. Sims. Illinois J Math 13:74–80zbMATHGoogle Scholar
  10. 10.
    Hoehler I, Collapsed adjacency matrices, character tables and Ramanujan graphs; http://www. math.rwth-aachen.de/Ines.Hoehler/Google Scholar
  11. 11.
    Praeger CE, Soicher LH (1997) Low rank representations and graphs for sporadic groups. Australian mathematical society lecture series, vol 8. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Rudvalis A (1971) (v,k,λ)-graphs and polarities of (v,k, λ)-designs. Math Z 120:224–230zbMATHCrossRefGoogle Scholar
  13. 13.
    Soicher LH The DESIGN package for GAP; http://www.designtheory.org/software/gap_design/Google Scholar
  14. 14.
    Wilson RA, The On-Line Atlas of Finite Group Representations, Version 3; http://brauer. maths.qmul.ac.uk/Atlas/v3Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Mathematical SciencesQueen Mary, University of LondonLondonUK
  2. 2.Mathematics and StatisticsUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations