Advertisement

Designs, Codes and Cryptography

, Volume 42, Issue 2, pp 227–237 | Cite as

Construction of deletion correcting codes using generalized Reed–Solomon codes and their subcodes

  • Dongvu Tonien
  • Reihaneh Safavi-Naini
Article

Abstract

A code is n-deletion correcting if it is possible to correct any n deletion of symbols having occurred in transmission of codewords. In this paper, we present explicit constructions of n-deletion correcting codes for arbitrary values of n using generalized Reed–Solomon codes and their subcodes.

Keywords

Deletion correcting Generalized Reed–Solomon codes 

AMS Classifications

11T71 94B50 12Y05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bours PAH (1995) On the construction of perfect deletion-correcting codes using design theory. Design Code Cryptogr 6:5–20zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Calabi L, Hartnett WE (1969) Some general results of coding theory with applications to the study of codes for the correction of synchronisation errors. Inf Control 15:235–249zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Davey MC, MacKay DJC (2001) Reliable communication over channels with insertions, deletions and substitutions. IEEE Trans Inf Theory 47(2):687–696zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Guruswami V, Sudan M (1999) Improved decoding of Reed–Solomon and algebraic geometry codes. IEEE Trans Inf Theory 45(6):1757–1767zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Klove T (1995) Codes correcting a single insertion/deletion of a zero or a single peakshift. IEEE Trans Inf Theory 41:279–283CrossRefMathSciNetGoogle Scholar
  6. 6.
    Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys-Dokl 10(8):707–710MathSciNetGoogle Scholar
  7. 7.
    Levenshtein VI (1971) One method of constructing quasilinear codes providing synchronisation in the presence of errors. Prob Inf Trans 7(3):215–222Google Scholar
  8. 8.
    Mahmoodi A (1998) Existence of perfect 3-deletion-correcting codes. Design Code Cryptogr 14:81–87zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Safavi-Naini R, Wang Y (2003) Traitor tracing for shortened and corrupted fingerprints. ACM-DRM’02 LNCS 2696:81–100Google Scholar
  10. 10.
    Shalaby N, Wang J, Yin J (2002) Existence of perfect 4-deletion-correcting codes with length six. Design Code Cryptogr 27:145–156zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sloane NJA (2002) On single-deletion-correcting codes. Code Designs Math Res Inst Publ 10:273–292MathSciNetGoogle Scholar
  12. 12.
    Tanaka E, Kasai T (1976) Synchronization and substitution error-correcting codes for the Levenshtein metric. IEEE Trans Inf Theory 22:156–162zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wang Y, McAven L, Safavi-Naini R (2004) Deletion correcting using generalized Reed–Solomon codes. Prog Comput Sci Appl Logic 23:345–358MathSciNetGoogle Scholar
  14. 14.
    Yin J (2001) A combinatorial construction for perfect deletion-correcting Codes. Design Code Cryptogr 23:99–110zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of IT and CSUniversity of WollongongWollongongAustralia

Personalised recommendations