Designs, Codes and Cryptography

, Volume 41, Issue 2, pp 153–176 | Cite as

Uncoverings-by-bases for base-transitive permutation groups

Article

Abstract

An uncovering-by-bases for a group G acting on a finite set Ω is a set \(\mathcal{U}\) of bases for G such that any r-subset of Ω is disjoint from at least one base in \(\mathcal{U}\), where r is a parameter dependent on G. They have applications in the decoding of permutation groups when used as error-correcting codes, and are closely related to covering designs. We give constructions for uncoverings-by-bases for many families of base-transitive group (i.e. groups which act transitively on their irredundant bases), including a general construction which works for any base-transitive group with base size 2, and some more specific constructions for other groups. In particular, those for the groups GL (3,q) and AGL (2,q) make use of the theory of finite fields. We also describe how the concept of uncovering-by-bases can be generalised to matroid theory, with only minor modifications, and give an example of this.

Keywords

Covering design Permutation group Bases Decoding 

AMS Classifications

05B40(primary) 20B20(primary) 94B35 (primary) 11T30(secondary) 05B30 (secondary) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailey RF (2006)Permutation groups, error-correcting codes and uncoverings. Ph.D. Thesis, University of London, 2006.Google Scholar
  2. 2.
    Bailey RF Error-correcting codes from permutation groups, submitted to Discrete Math. Preprint available from http://www.maths.qmul.ac.uk/~∼ rfb/papers/Google Scholar
  3. 3.
    Bailey RF, Bray JN (In preparation) Decoding the Mathieu group M 12 Google Scholar
  4. 4.
    Cameron PJ (1993) Some multiply transitive permutation groups. In: Jungnickel D, Vanstone SA (eds) Coding theory, design theory, group theory: proceedings of the Marshall Hall conference. Wiley, New YorkGoogle Scholar
  5. 5.
    Cameron PJ (1999) Permutation groups, London Mathematical Society Student Texts, Vol 45. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Cameron PJ, Deza M (1979) On permutation geometries. J Lond Math Soc 20(2):373–386MATHMathSciNetGoogle Scholar
  7. 7.
    Cameron PJ, Fon-Der-Flaass DG (1995) Bases for permutation groups and matroids. Eur J Combinatorics 16:537–544MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Carlitz L (1952) Primitive roots in a finite field. Transact Am Math Soc 73:373–382MATHCrossRefGoogle Scholar
  9. 9.
    Carlitz L (1952) Some problems involving primitive roots in a finite field. Proc Nat Acad Sci USA 38:314–318, 618Google Scholar
  10. 10.
    Cohen SD (1990) Primitive elements and polynomials with arbitrary trace. Discrete Math 83:1–7MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cohen SD, Huczynska S (2003) The primitive normal basis theorem—without a computer. J Lond Math Soc 67(2):41–56MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA 1985 (reprinted with corrections, 2003) \(\mathbb{ATLAS}\) of Finite Groups. Clarendon Press, OxfordGoogle Scholar
  13. 13.
    Davenport H (1968,1969) Bases for finite fields. J Lond Math Soc 43:21–39; 44:378Google Scholar
  14. 14.
    Dixon JD, Mortimer B (1996) Permutation groups. Graduate Texts in Mathematics, Vol 163. Springer-Verlag, New YorkGoogle Scholar
  15. 15.
    The GAP Group (2004) GAP—Groups, algorithms, and programming, Version 4.4. (http://www.gap-system.org)Google Scholar
  16. 16.
    Gordon DM La Jolla Covering Repository, http://www.ccrwest.org/cover.htmlGoogle Scholar
  17. 17.
    Gordon DM, Kuperberg G, Patashnik O (1995) New constructions for covering designs. J Comb Des 3:269–284MATHMathSciNetGoogle Scholar
  18. 18.
    Gorenstein D, Hughes DR (1961) Triply transitive groups in which only the identity fixes four letters. Illinois J Math 5:486–491MATHMathSciNetGoogle Scholar
  19. 19.
    Jordan C (1873) Sur la limite de transitivité des groupes non-alternées. Bull Soc Math France 1:40–71Google Scholar
  20. 20.
    Lenstra Jr HW, Schoof RJ (1987) Primitive normal bases for finite fields. Math Comp 48:217–231MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Lidl R, Niederreiter H (1997) Finite fields. Encyclopedia of Mathematics and its Applications (20), 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Maund T (1989) Bases for permutation groups. D.Phil. Thesis, University of OxfordGoogle Scholar
  23. 23.
    Mills WH (1979) Covering designs. I. Coverings by a small number of subsets. Ars Combin 8:199–315MATHMathSciNetGoogle Scholar
  24. 24.
    Mills WH, Mullin RC (1992) Coverings and packings. In: Dinitz JH, Stinson DR (eds) Contemporary design theory: a collection of surveys. Wiley, New YorkGoogle Scholar
  25. 25.
    Neumann PM, Stoy GA, Thompson EC (1994) Groups and geometry. Oxford University Press, OxfordMATHGoogle Scholar
  26. 26.
    Oxley JG (1992) Matroid theory. Oxford University Press, OxfordMATHGoogle Scholar
  27. 27.
    Zassenhaus H (1936) Kennzeichnung endlicher linearer als Permutationsgruppen. Abh Math Sem Hamburg 11:17–40Google Scholar
  28. 28.
    Zassenhaus H (1936) Über endliche Fastkörper. Abh Math Sem Hamburg 11:187–220Google Scholar
  29. 29.
    Zil’ber B (1988) Finite homogeneous geometries. Seminarber Humboldt-Univ Berlin Sekt Math 98:186–208MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Queen MaryUniversity of LondonLondonUK

Personalised recommendations