Designs, Codes and Cryptography

, Volume 41, Issue 1, pp 23–31 | Cite as

Constructing codes identifying sets of vertices

Article

Abstract

For all t ≥  2, we give an explicit construction of an infinite family of graphs such that G admits a code identifying sets of at most t vertices of G of cardinality O(t2 ln |V(G)|) for all members G of the family. This beats the best previously known explicit construction by a factor of t2.

Keywords

Identifying codes Fault detection Code construction 

Keywords

AMS classifications 05C99 94B60 94C12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erdős, P 1932Beweis eines Satzes von TschebyschefActa Litterar Sci, Szeged5194198Google Scholar
  2. 2.
    Frieze A, Martin R, Moncel J, Ruszinkó M, Smyth C Codes identifying sets of vertices in random networks, submitted.Google Scholar
  3. 3.
    Gravier, S, Moncel, J 2005Construction of codes identifying sets of vertices in graphsElect J Comb12R13MATHMathSciNetGoogle Scholar
  4. 4.
    Honkala, I, Laihonen, T, Ranto, S 2001On codes identifying sets of vertices in hamming spacesDesigns, Codes Cryptogr24193204MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hwang, FK, Sós, V 1987Non-adaptive hypergeometric group testingStudia Sci Mathemat Hung22257263MATHGoogle Scholar
  6. 6.
    Karpovsky, MG, Chakrabarty, K, Levitin, LB 1998On a new class of codes for identifying vertices in graphsIEEE Trans Inform Theory44599611MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Laihonen, T, Ranto, S 2001Codes identifying sets of verticesLecture Notes Comput Sci22278291MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ranto, S, Honkala, I, Laihonen, T 2002Two families of optimal identifying codes in binary Hamming spacesIEEE Trans Infor Theory4812001203MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.psGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.ERTé “Maths à Modeler”, Groupe de Recherche GéoDLaboratoire LeibnizGrenoble CedexFrance

Personalised recommendations