Designs, Codes and Cryptography

, Volume 39, Issue 1, pp 17–31 | Cite as

Classification and Constructions of Complete Caps in Binary Spaces

  • Mahdad Khatirinejad
  • Petr Lisoněk


We give new recursive constructions of complete caps in PG(n,2). We approach the problem of constructing caps with low dependency via the doubling construction and comparison to lower bounds. We report results of the exhaustive classification (up to projective equivalence) of all caps in PG(n,2) for n≤ 6.


Caps complete caps Galois geometries binary linear codes fractional fractorial designs isomorph-free generation 

AMS Classification

51E22 94B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brouwer, A., Bruen, A. A., Wehlau, D. L. 1996There exist caps which block all spaces of fixed codimension in PG(n,2)J. Combin. Theory Ser. A73168169CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bruen, A. A., Haddad, L., Wehlau, D. L. 1998Binary codes and capsJ. Combin. Des.6275284CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bruen, A. A., Wehlau, D. L. 2001New codes from old; a new geometric constructionJ. Combin. Theory Ser. A94196202CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, H., Hedayat, A. S. 19962n-l designs with weak minimum aberrationAnn. Stat.2425362548MathSciNetGoogle Scholar
  5. 5.
    Chen, J., Sun, D. X., Wu, C. F. J. 1993A catalogue of two-level and three-level fractional factorial designs with small runsInt. Stat. Rev.61131145Google Scholar
  6. 6.
    Clark, W. E., Pedersen, J. 1992Sum-free sets in vector spaces over GF (2)J. Combin. Theory Ser. A61222229MathSciNetGoogle Scholar
  7. 7.
    Davydov, A. A., Tombak, L. M. 1988The number of words of minimal weight in block codesProblems Inform. Transmission24718MathSciNetGoogle Scholar
  8. 8.
    Davydov, A. A., Tombak, L. M. 1989Quasiperfect linear binary codes with distance 4 and complete caps in projective geometryProblems Inform. Transmission25265275MathSciNetGoogle Scholar
  9. 9.
    Davydov, A. A., Tombak, L. M. 1991An alternative to the Hamming code in the class of SEC-DED codes in semiconductor memoryIEEE Trans. Inform. Theory37897902part 2CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fugère, J., Haddad, L., Wehlau, D. 19945-chromatic Steiner triple systemsJ. Combin. Des.2287299MathSciNetGoogle Scholar
  11. 11.
    Gabidulin, E. M., Davydov, A. A., Tombak, L. M. 1991Linear codes with covering radius 2 and other new covering codesIEEE Trans. Inform. Theory37219224CrossRefMathSciNetGoogle Scholar
  12. 12.
    Imber, J. J. E., Wehlau, D. L. 2003A family of small complete caps in \(\mathbb{PG}(n,2)\)European J. Combin.24613615CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kerber, A. 1999Applied Finite Group ActionsSpringer-VerlagBerlinAlgorithms and Combinatorics, 19Google Scholar
  14. 14.
    Lisoněk, P., Khatirinejad, M. 2005A family of complete caps in PG(n,2)Des. Codes Cryptogr.35259270MathSciNetGoogle Scholar
  15. 15.
    B. D. McKay, nauty User’s Guide. Technical Report TR-CS-90-02, Department of Computer Science, Australian National University, 1990.Google Scholar
  16. 16.
    Royle, G. F. 1998An orderly algorithm and some applications in finite geometryDiscrete Math.185105115zbMATHMathSciNetGoogle Scholar
  17. 17.
    D. J. Street, Factorial Designs. In The CRC Handbook of Combinatorial Designs. (C. J. Colbourn and J. H. Dinitz, eds.) CRC Press, Boca Raton (1996).Google Scholar
  18. 18.
    Wehlau, D. L. 2001Complete caps in projective space which are disjoint from a subspace of codimension twoBlokhuis, A.Hirschfeld, J. W. P.Jungnickel, D.Thas, J. A. eds. Finite GeometriesKluwer Academic PublishingDordrecht347361Google Scholar
  19. 19.
    Wu, C. F. J., Hamada, M. 2000Experiments. Planning, Analysis, and Parameter Design OptimizationJohn Wiley & SonsNew YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations