Designs, Codes and Cryptography

, Volume 34, Issue 2–3, pp 333–337 | Cite as

A Note on the Tight Spherical 7-Design in \({\mathbb R}^{23}\) and 5-Design in \({\mathbb R}^{7*}\)

Article

Abstract

In this note we prove the uniqueness of the tight spherical 7-design in\({\mathbb R}^{23}\) consisting of 4600 vectors and with automorphism group 2 × Co2 as well as the uniqueness of the tight spherical 5-design in \({\mathbb R}^{7}\) on 112 vectors and with automorphism group 2 × Sp6(2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bannai, E., Damerell, R. M. 1980Tight spherical designs IIJournal London Math. Soc.211320MATHMathSciNetGoogle Scholar
  2. Bannai, E., Sloane, N. 1981Uniqueness of certain spherical codesCan. J. Math.33437449MathSciNetGoogle Scholar
  3. Cameron, P. J. 1982Dual polar spacesGeom. Dedicata127585MATHMathSciNetGoogle Scholar
  4. Cuypers, H. 2004Extended near hexagons and line systems, Advances in GeometryAdvances in Geometry4181214MATHMathSciNetGoogle Scholar
  5. Delsarte, P., Goethals, J. M., Seidel, J. J. 1977Spherical codes and designsGeom. Dedicata6363388CrossRefMATHMathSciNetGoogle Scholar
  6. Seymour, P. D., Zaslavsky, T. 1984Averaging setsAdv. Math.52213240MATHMathSciNetGoogle Scholar
  7. Shult, E. E., Yanushka, A. 1980Near polygons and line systemsGeom. Dedicata9172MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations