Designs, Codes and Cryptography

, Volume 37, Issue 1, pp 31–43 | Cite as

On the Non-linearity of Power Functions

  • Philippe Langevin
  • Pascal Véron


We study the Boolean functions arising from power functions by means of Stickelberger’s congruences on Gauss sum. We obtain a new criterion for high non-linearity of such boolean functions in terms of permutation polynomials. Finally, a new characteristic property of Gold exponents is given.


Gauss sums Boolean funcitons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ax, J. 1964Zeroes of polynomials over finite fieldsAm. J. Math.86256261Google Scholar
  2. Canteaut, A., Charpin, P., Dobbertin, P.H. 2000Binary M-sequences with three-valued crosscorrelation: a proof of the Welch conjectureIEEE trans. IT.4648Google Scholar
  3. Canteaut, A., Charpin, P., Dobbertin, H. 2000Weight divisibility of cyclic codes, highly nonlinear functions and crosscorrelation of maximum-length sequencesSIAM J. Discrete Math.13105138CrossRefGoogle Scholar
  4. Li, W.-C.W., Poonen, B., Calderbank, A.R. 1997A 2-adic approach to the analysis of cyclic codesIEEE trans. Inf. Th.43977986CrossRefGoogle Scholar
  5. Claude Carlet Codes de Reed-Muller, codes de Kerdock et de Preparata Phd thesis, Paris VI, 1990Google Scholar
  6. Calderbank, A.R., McGuire, G. 1995Proof of a conjecture of S arwate and P ursley regarding pairs of binary m-sequencesIEEE trans. Inf. Theory.4111531155CrossRefGoogle Scholar
  7. Chabaud, F., Vaudenay, S. 1994Links between diffrential and linear cryptanalysisEurocrypt94356365Google Scholar
  8. Cusick, T., Dobbertin, H. 1996Some new 3-valued crosscorrelation functions of binary m-sequencesIEEE Trans. Inf. Theory.4212381240CrossRefGoogle Scholar
  9. van Dam E.R., Fon-Der-Flaass D. Codes, Graphs and schemes from nonlinear functions. preprint, 2000Google Scholar
  10. Delsarte, P. 1971Weight of p-ary A belian codesPhilips Res. Rep.26145153Google Scholar
  11. Delsarte et, P., McEliece, R.J. 1976Zeros of functions in finite abelian group algebrasAm. J. Math.98197224Google Scholar
  12. Dieudonné J., La Géométrie Des Groupes Classiques, Springer-Verlag (1971)Google Scholar
  13. Dobbertin, H. 1998One-to-one highly nonlinear power functions on finite fieldsAAECC.9139152CrossRefGoogle Scholar
  14. Dobbertin, H. 1999Almost Perfect nonlinear power functions on GF(2 n ): the Welch caseIEEE Trans. Inf. Theory.4512711275CrossRefGoogle Scholar
  15. Dobbertin, H. 1999Almost Perfect nonlinear power functions on GF(2 n ): the Niho caseInf. Comput.1515772CrossRefGoogle Scholar
  16. Dobbertin, H. 1999Another Proof of Kasami’s TheoremDes. Codes Crypt.11177180CrossRefGoogle Scholar
  17. Gold R. (1967). Optimal binary sequences for spread spectrum multiplexing. IEEE Vol. IT-13. 619–621Google Scholar
  18. Gold, R. 1968Maximal recursive sequences with 3-valued crosscorrelation functionsIEEE trans. Inf. Theory.14154156CrossRefGoogle Scholar
  19. Tor, Helleseth. 1976Some results about the crosscorrelation function between two maximal linear sequencesDiscrete Math.16209232CrossRefGoogle Scholar
  20. Hollmann, H.D.L., Xiang, Q. 2001A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences Finite Fields thAppl.7253287Google Scholar
  21. Kasami, T. 1971The weight enumerators for several classes of subcodes of the 2-nd Reed-Muller codesInf. Control.18369394CrossRefGoogle Scholar
  22. Carlitz, L., Uchiyama, S. 1957Bounds for exponential sumsDuke Math.243741CrossRefGoogle Scholar
  23. Joly J.R. Equations et variétés algébriques sur un corps fini. L’enseignement mathématique, Vol. xix (1974)Google Scholar
  24. Lachaud, G., Wolfmann, J. 1987Sommes de K loosterman, courbes elliptiques et codes cycliques en caractéristique 2CRAS.305881883Google Scholar
  25. Lang S. (1990). Cyclotomic fields I and II. GTM. Vol. 121Google Scholar
  26. Philippe Langevin Rayon de Recouvrement des Codes de Reed-Muller Affines, Ph.d Thesis, Université de Limoges (1992)Google Scholar
  27. McEliece, R.J. 1972Weight congruences for p-ary cyclic codesDiscr. Math.3177192CrossRefGoogle Scholar
  28. Niho Y. (1972). Multi-valued Cross Correlation Functions Between Two Maximal Linear Recursive Sequences. Ph.D Thesis, University of Southern CaliforniaGoogle Scholar
  29. Nyberg K. (1994). Differentially uniform mappings for cryptography. Proc. of Eurocrypt ’93, LNCS 765, Springer-Verlag pp 55–64Google Scholar
  30. Poonen, B., McGuire, G., Calderbank, A.R., Rubinstein, M. 1995On a conjecture of Helleseth’s conjecture regarding pairs of binary m-sequencesIEEE trans. Inf. Theory.4111531155CrossRefGoogle Scholar
  31. Sarwate, D.V., Pursley, M.B. 1980Cross correlation properties of pseudo-random and related sequencesProc. IEEE.68593619Google Scholar
  32. Sidel’Nikov, V.M. 1971On the mutual correlation of sequencesSoviet Math. Dokl.12197201Google Scholar
  33. Stickelberger, J. 1890Uber eine verallgemeinerung der kreistheilungMath. Ann.37321367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.GRIMUniversité de ToulonFrance

Personalised recommendations