Designs, Codes and Cryptography

, Volume 35, Issue 1, pp 81–109 | Cite as

Support Weight Enumerators and Coset Weight Distributions of Isodual Codes

  • Olgica Milenkovic


In this paper various methods for computing the support weight enumerators of binary, linear, even, isodual codes are described. It is shown that there exist relationships between support weight enumerators and coset weight distributions of a code that can be used to compute partial information about one set of these code invariants from the other. The support weight enumerators and complete coset weight distributions of several even, isodual codes of length up to 22 are computed as well. It is observed that there exist inequivalent codes with the same support weight enumerators, inequivalent codes with the same complete coset weight distribution and inequivalent codes with the same support eight enumerators and complete coset weight distribution.


coset weight distribution formally self-dual codes support weight enumerators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assmuss, E., Pless, V. 1983On the covering radius of extremal self-dual codesIEEE Transactions on Information Theory29359363Google Scholar
  2. Bachoc, C. 1999On harmonic weight enumerators of binary codesDesigns, Codes and Cryptography181128Google Scholar
  3. Chen, H., Coffey, J. 2001Trellis structure and higher weights of extremal self-dual codesDesigns, Codes, and Cryptography241536Google Scholar
  4. Dodunekov, S., Manev, N. 1985An improvement of the Griesmer bound for some small minimum distancesDiscrete Applied Mathmatics12103114Google Scholar
  5. S. Dougherty, A. Gulliver and M. Oura, Higher weights and graded rings for binary self-dual codes, in submission.Google Scholar
  6. R. Eriksson, A property of coset weight distributions, Proceedings of the Sixth International Workshop on Algebraic and Combinatorial Coding Theory, Pskov, Russia (1998) pp. 112–115.Google Scholar
  7. Fields, J. E., Gaborit, P., Huffman, W. C., Pless, V. 1999On the classification of extremal even formally self-dual codesDesigns, Codes and Cryptography18125148Google Scholar
  8. Fields, J., Gaborit, P., Huffman, W., Pless, V. 2001On the classification of extremal even formally self-dual codes of lengths 20 and 22Discrete Applied Mathmatics1117586Google Scholar
  9. Forney, G. D.,Jr. 1994Dimension/length profiles and trellis complexity of linear block codesIEEE Transactions on Infomation TheoryIT-4017411752Google Scholar
  10. Gulliver, A., Harada, M. 1997Classification of extremal double circulant formally self-dual even codesDesigns, Codes and Cryptography112535Google Scholar
  11. Helleseth, T., Kløve, T., Mykkeltveit, J. 1977The weight distribution of irreducible cyclic codes with block length n1((ql-1)/N)Discrete Mathmatics18179211Google Scholar
  12. Hoffman, D. 1993Linear codes and weightsAustralian Journal of Combinatorics73745Google Scholar
  13. David Jaffe’s database of optimal binary codes: Scholar
  14. G. Kabatianski, On the second generalized Hamming weight, Proceedings of the Algebraic and Combinatorial Coding Theory Workshop, Voneshta Voda, Bulgaria (1992) pp. 98–100.Google Scholar
  15. Kasami, T., Takata, T., Fujiwara, T., Lin, S. 1993On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codesIEEE Transaction on Information Theory39242245Google Scholar
  16. Kløve, T. 1992Support weight distribution of linear codesDiscrete Mathmatics106/107311316Google Scholar
  17. Koch, H. 1989On self-dual, doubly–even codes of length 32Journal of Combinatorial Theory, A516376Google Scholar
  18. MacWilliams, F. J., Sloane, N. J. A. 1977The Theory of Error-Correcting CodesNorth-Holland Publishing CompanyNew YorkGoogle Scholar
  19. O. Milenkovic, J. Coffey and K. Compton, On the generalized Hamming weight enumerators of the doubly–even [32,16,8] self-dual codes, submitted to IEEE Transaction on Information Theory.Google Scholar
  20. Moreno, O., Pedersen, J., Polemi, D. 1998Improved Serre bound for elementary Abelian extensions of F q (x) and the generalized Hamming weights of duals of BCH codesIEEE Transaction on Information Theory}4412921293Google Scholar
  21. Pless, V. 1975On the classification and enumeration of self-dual codesJournal of Combinatorial Theory} {A}18313335Google Scholar
  22. Pless, V. 1972A classification of self-orthogonal codes over GF(2)’‘Discrete Mathmatics3209246Google Scholar
  23. Rains, E. M., Sloane, N. J. 1998self-dual codesPless,  V.Huffman, W. eds. Handbook of Coding Theory, Vol. 1North Holland Publishing CompanyAmsterdamGoogle Scholar
  24. Shim, C., Chung, H. 1995On the second generalized Hamming weight of the dual code of a double-error correcting binary BCH code’‘IEEE Transaction on Information Theory41805808Google Scholar
  25. Simonis, J. 1992The [18,9,6] code is uniqueDiscrete Mathematics106/107439448Google Scholar
  26. Simonis, J. 1994The effective length of subcodesApplicable Algebra in Engineering, Communication, and Computing5371377Google Scholar
  27. Stichtenoth, H., Voss, C. 1994Generalized Hamming weights of trace codesIEEE Transaction on Information Theory40554558Google Scholar
  28. Tsfasman, M., Vladut, S. 1995Geometric approach to higher weightsIEEE Transaction on Information Theory4110421073Google Scholar
  29. Geer, G., Vlugt, M. 1995Generalized Hamming weights of BCH(3) revisitedIEEE Transaction on Information Theory41300301Google Scholar
  30. Wei, V. 1991Generalized Hamming weights for linear codesIEEE Transaction on Information Theory3714121418Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Olgica Milenkovic
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations