Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Relationship Between the Gut Microbiome and Systemic Chemotherapy

Abstract

The intestinal microbiome encodes vast metabolic potential, and multidisciplinary approaches are enabling a mechanistic understanding of how bacterial enzymes impact the metabolism of diverse pharmaceutical compounds, including chemotherapeutics. Microbiota alter the activity of many drugs and chemotherapeutics via direct and indirect mechanisms; some of these alterations result in changes to the drug’s bioactivity and bioavailability, causing toxic gastrointestinal side effects. Gastrointestinal toxicity is one of the leading complications of systemic chemotherapy, with symptoms including nausea, vomiting, diarrhea, and constipation. Patients undergo dose reductions or drug holidays to manage these adverse events, which can significantly harm prognosis, and can result in mortality. Selective and precise targeting of the gut microbiota may alleviate these toxicities. Understanding the composition and function of the microbiota may serve as a biomarker for prognosis, and predict treatment efficacy and potential adverse effects, thereby facilitating personalized medicine strategies for cancer patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836.

  2. 2.

    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

  3. 3.

    Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–15723.

  4. 4.

    Sekirov I, Russell SL, Antunes CML, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

  5. 5.

    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230.

  6. 6.

    Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249.

  7. 7.

    Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9:599–608.

  8. 8.

    Maslowski KM, MacKay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12:5–9.

  9. 9.

    Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–3052.

  10. 10.

    Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Sci Am Assoc Adv Sci. 2012;336:1262–1267.

  11. 11.

    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.

  12. 12.

    McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-induced constipation and diarrhea: pathophysiology, current and emerging treatments. Front Pharmacol. 2016;7:414.

  13. 13.

    Stein A, Voigt W, Jordan K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol. 2010;2:51–63.

  14. 14.

    Coyle VM, Lungulescu D, Toganel C, et al. A randomised double-blind placebo-controlled phase II study of AGI004 for control of chemotherapy-induced diarrhoea. Br J Cancer. 2013;108:1027–1033.

  15. 15.

    Maroun JA, Anthony LB, Blais N, et al. Prevention and management of chemotherapy-induced diarrhea in patients with colorectal cancer: a consensus statement by the Canadian Working Group on Chemotherapy-Induced Diarrhea. Curr Oncol. 2007;14:13–20.

  16. 16.

    Pouncey AL, Scott AJ, Alexander JL, Marchesi J, Kinross J, Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment. Ecancermedicalscience 2018;12.

  17. 17.

    Deng X, Li Z, Li G, Li B, Jin X, Lyu G. Comparison of microbiota in patients treated by surgery or chemotherapy by 16S rRNA sequencing reveals potential biomarkers for colorectal cancer therapy. Front Microbiol. 2018;9:1607.

  18. 18.

    Stringer AM, Al-Dasooqi N, Bowen JM, et al. Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Support Care Cancer. 2013;21:1843–1852.

  19. 19.

    Sonis ST. The pathobiology of mucositis. Nat Rev Cancer. 2004;4:277–284.

  20. 20.

    Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120:1453–1461.

  21. 21.

    Farrell C, Brearley SG, Pilling M, Molassiotis A, Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in, C., International Society of Oral, O. The impact of chemotherapy-related nausea on patients’ nutritional status, psychological distress and quality of life. Support Care Cancer. 2013;21:59–66.

  22. 22.

    Palli SR, Grabner M, Quimbo RA, Rugo HS. The impact of 5-hydroxytryptamine-receptor antagonists on chemotherapy treatment adherence, treatment delay, and nausea and vomiting. Cancer Manag Res. 2015;7:175–188.

  23. 23.

    Talley NJ, Phillips SF, Haddad A, et al. GR 38032F (ondansetron), a selective 5HT3 receptor antagonist, slows colonic transit in healthy man. Dig Dis Sci. 1990;35:477–480.

  24. 24.

    Sharma RK. Vincristine and gastrointestinal transit. Gastroenterology. 1988;95:1435–1436.

  25. 25.

    Weed HG. Lactulose vs sorbitol for treatment of obstipation in hospice programs. Mayo Clin Proc. 2000;75:541.

  26. 26.

    Kozloff M, Yood MU, Berlin J, et al. Clinical outcomes associated with bevacizumab-containing treatment of metastatic colorectal cancer: the BRiTE observational cohort study. Oncologist. 2009;14:862–870.

  27. 27.

    Rodrigues FG, Dasilva G, Wexner SD. Neutropenic enterocolitis. World J Gastroenterol. 2017;23:42–47.

  28. 28.

    Hussein MA, Bird BR, O’Sullivan MJ, et al. Symptoms in cancer patients and an unusual tumor: case 2. Docetaxel-related ischemic colitis. J Clin Oncol. 2005;23:9424–9425.

  29. 29.

    Peretz A, Shlomo IB, Nitzan O, Bonavina L, Schaffer PM, Schaffer M. Clostridium difficile infection: associations with chemotherapy, radiation therapy, and targeting therapy treatments. Curr Med Chem. 2016;23:4442–4449.

  30. 30.

    Benson AB 3rd, Ajani JA, Catalano RB, et al. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J Clin Oncol. 2004;22:2918–2926.

  31. 31.

    Richardson G, Dobish R. Chemotherapy induced diarrhea. J Oncol Pharm Pract. 2007;13:181–198.

  32. 32.

    Ippoliti C. Antidiarrheal agents for the management of treatment-related diarrhea in cancer patients. Am J Health Syst Pharm. 1998;55:1573–1580.

  33. 33.

    Ma WW, Saif MW, El-Rayes BF, et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer. 2017;123:345–356.

  34. 34.

    David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563.

  35. 35.

    Xue H, Sawyer MB, Wischmeyer PE, Baracos VE. Nutrition modulation of gastrointestinal toxicity related to cancer chemotherapy: from preclinical findings to clinical strategy. J Parenter Enter Nutr. 2011;35:74–90.

  36. 36.

    Verma M, Hontecillas R, Abedi V, et al. Modeling-enabled systems nutritional immunology. Front Nutr. 2016;3:5.

  37. 37.

    Aarnoutse R, Ziemons J, Penders J, Rensen SS, de Vos-Geelen J, Smidt ML. The clinical link between human intestinal microbiota and systemic cancer therapy. Int J Mol Sci. 2019;20:4145.

  38. 38.

    Montassier E, Batard E, Massart S, et al. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation. Microbial Ecol. 2014;67:690–699.

  39. 39.

    Zwielehner J, Lassl C, Hippe B, et al. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS ONE. 2011;6:e28654.

  40. 40.

    Galloway-Peña JR, Smith DP, Sahasrabhojane P, et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer. 2016;122:2186–2196.

  41. 41.

    Youssef O, Lahti L, Kokkola A, et al. Stool microbiota composition differs in patients with stomach, colon, and rectal neoplasms. Dig Dis Sci. 2018;63:2950–2958.

  42. 42.

    Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124:1174–1182.

  43. 43.

    Pal SK, Li SM, Wu X, et al. Stool bacteriomic profiling in patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor-tyrosine kinase inhibitors. Clin Cancer Res. 2015;21:5286–5293.

  44. 44.

    Hoption Cann SA, Van Netten JP, Van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J. 2003;79:672–680.

  45. 45.

    Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther. 1994;64:529–564.

  46. 46.

    Groves MJ. Pharmaceutical characterization of Mycobacterium bovis bacillus calmette-guérin (BCG) vaccine used for the treatment of superficial bladder cancer. J Pharm Sci. 1993;82:555–562.

  47. 47.

    Aragon G, Graham DB, Borum M, Doman DB. Probiotic therapy for irritable bowel syndrome. Gastroenterol Hepatol. 2010;6:39–44.

  48. 48.

    Chibbar R, Dieleman LA. Probiotics in the management of ulcerative colitis. J Clin Gastroenterol. 2015;49:S50–S55.

  49. 49.

    Guslandi M. Role of probiotics in the management of pouchitis. Curr Pharm Des. 2014;20:4561–4564.

  50. 50.

    Gionchetti P, Calafiore A, Riso D, et al. The role of antibiotics and probiotics in pouchitis. Ann Gastroenterol. 2012;25:100–105.

  51. 51.

    Butterworth AD, Thomas AG, Akobeng AK, Probiotics for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2008;(3):CD006634. https://doi.org/10.1002/14651858.CD006634.pub2.

  52. 52.

    Duong MT, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51:152.

  53. 53.

    Yuvaraj S, Al-Lahham SAH, Somasundaram R, Figaroa PA, Peppelenbosch MP, Bos NA. E. coli-produced BMP-2 as a chemopreventive strategy for colon cancer: a proof-of-concept study. Gastroenterol Res Pract. 2012;2012:6.

  54. 54.

    Din MO, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536:81–85.

  55. 55.

    Rosenoff S. Resolution of refractory chemotherapy-induced diarrhea (CID) with octreotide long-acting formulation in cancer patients: 11 Case studies. Suppor Care Cancer. 2004;12:561–570.

  56. 56.

    Mego M, Chovanec J, Vochyanova-Andrezalova I, et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement Ther Med. 2015;23:356–362.

  57. 57.

    Abd El-Atti S, Wasicek K, Mark S, Hegazi R. Use of probiotics in the management of chemotherapy-induced diarrhea: a case study. J Parenter Enter Nutr. 2009;33:569–570.

  58. 58.

    Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther. 1990;47:35–60.

  59. 59.

    White TJ, Arakelian A, Rho JP. Counting the costs of drug-related adverse events. PharmacoEconomics. 1999;15:445–458.

  60. 60.

    Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res Off J Ital Pharmacol Soc. 2013;69:21–31.

  61. 61.

    Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14:273–287.

  62. 62.

    Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 2014;124:4173–4181.

  63. 63.

    Koppel N, Rekdal VM, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017;356:2770.

  64. 64.

    Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008;363:1–25.

  65. 65.

    Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570:462–467.

  66. 66.

    Saha, Butler V, Neu H, Lindenbaum J. Digoxin-inactivating bacteria: identification in human gut flora. Science. 1983;220:325–327.

  67. 67.

    Peppercorn MA, Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther. 1972;181:555–562.

  68. 68.

    Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Trans Res. 2017;179:204–222.

  69. 69.

    Shu YZ, Kingston DGI, Van Tassell RL, Wilkins TD. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica. 1991;21:737–750.

  70. 70.

    Smith GE, Griffiths LA. Metabolism of n-acylated and o-alkylated drugs by the intestinal microflora during anaerobic incubation in vitro. Xenobiotica. 1974;4:477–487.

  71. 71.

    Clark AM, Clinton RT, Baker JK, Hufford CD. Demethylation of imipramine by enteric bacteria. J Pharm Sci. 1983;72:1288–1290.

  72. 72.

    Caldwell J, Hawksworth GM. The demethylation of methamphetamine by intestinal microflora. J Pharm Pharmacol. 1973;25:422–424.

  73. 73.

    Vermes A, Kuijper EJ, Guchelaar HJ, Dankert J. An in vitro study on the active conversion of flucytosine to fluorouracil by microorganisms in the human intestinal microflora. Chemotherapy. 2003;49:17–23.

  74. 74.

    Harris BE, Manning BW, Federle TW, Diasio RB. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob Agents Chemother. 1986;29:44–48.

  75. 75.

    Calne DB, Karoum F, Ruthven CR, Sandler M. The metabolism of orally administered L-Dopa in Parkinsonism. Br J Pharmacol. 1969;37:57–68.

  76. 76.

    Sandler M, Goodwin BL, Ruthven CRJ, Calne DB. Therapeutic implications in Parkinsonism of m-tyramine formation from L-dopa in man. Nature. 1971;229:414–416.

  77. 77.

    Bakke OM. Degradation of DOPA by intestinal microorganisms in vitro. Acta Pharmacol Toxicol. 1971;30:115–121.

  78. 78.

    Goldin BR, Peppercorn MA, Goldman P. Contributions of host and intestinal microflora in the metabolism of L dopa by the rat. J Pharmacol Exp Ther. 1973;86:160–166.

  79. 79.

    Pierantozzi M, Pietroiusti A, Brusa L, et al. Helicobacter pylori eradication and L-dopa absorption in patients with PD and motor fluctuations. Neurology. 2006;66:1824–1829.

  80. 80.

    Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science. 2019;363:9931.

  81. 81.

    Toda T, Saito N, Ikarashi N, et al. Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica. 2009;39:323–334.

  82. 82.

    Claus SP, Ellero SL, Berger B, et al. Colonization-induced host-gut microbial metabolic interaction. mBio. 2011;2:271.

  83. 83.

    Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS ONE. 2009;4:6958.

  84. 84.

    Watkins PB, Kaplowitz N, Slattery JT, et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. J Am Med Assoc. 2006;296:87–93.

  85. 85.

    Harrill AH, Watkins PB, Su S, et al. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res. 2009;19:1507–1515.

  86. 86.

    Selmer T, Andrei PI. p-hydroxyphenylacetate decarboxylase from Clostridium difficile: a novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem. 2001;268:1363–1372.

  87. 87.

    Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci USA. 2009;106:14728–14733.

  88. 88.

    Laine JE, Auriola S, Pasanen M, Juvonen RO. Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica. 2009;39:11–21.

  89. 89.

    Zhu W, Wang Z, Tang WHW, Hazen SL. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation. 2017;135:1671–1673.

  90. 90.

    Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–585.

  91. 91.

    Warrier M, Shih DM, Burrows AC, et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015;10:326–338.

  92. 92.

    Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA. 2012;109:21307–21312.

  93. 93.

    Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–65.

  94. 94.

    Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England J Med. 2013;368:1575–1584.

  95. 95.

    Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24:1407–1417.

  96. 96.

    Ulmer JE, Vilén EM, Namburi RB, et al. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. J Biol Chem. 2014;289:24289–24303.

  97. 97.

    Saitta KS, Zhang C, Lee KK, Fujimoto K, Redinbo MR, Boelsterli UA. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica. 2014;44:28–35.

  98. 98.

    Boelsterli UA, Redinbo MR, Saitta KS. Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci Off J Soc Toxicol. 2013;131:654–667.

  99. 99.

    Pellock SJ, Redinbo MR. Glucuronides in the gut: sugar-driven symbioses between microbe and host. J Biol Chem. 2017;292:8569–8576.

  100. 100.

    Stringer AM, Gibson RJ, Bowen JM, et al. Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile. Int J Exp Pathol. 2009;90:489–499.

  101. 101.

    Smith NF, Figg WD, Sparreboom A. Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol In Vitro. 2006;20:163–175.

  102. 102.

    Kehrer DF, Sparreboom A, Verweij J, et al. Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res. 2001;7:1136–1141.

  103. 103.

    Gibson RJ, Bowen JM, Inglis MR, Cummins AG, Keefe DM. Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J Gastroenterol Hepatol. 2003;18:1095–1100.

  104. 104.

    de Jong FA, Kehrer DF, Mathijssen RH, et al. Prophylaxis of irinotecan-induced diarrhea with neomycin and potential role for UGT1A1*28 genotype screening: a double-blind, randomized, placebo-controlled study. Oncologist. 2006;11:944–954.

  105. 105.

    Lin XB, Farhangfar A, Valcheva R, et al. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS One. 2014;9:e83644.

  106. 106.

    Pollet RM, D’Agostino EH, Walton WG, et al. An Atlas of beta-Glucuronidases in the Human Intestinal Microbiome. Structure. 2017;25:967–977.

  107. 107.

    Creekmore BC, Gray JH, Walton WG, et al. Mouse gut microbiome-encoded beta-glucuronidases identified using metagenome analysis guided by protein structure. mSystems. 2019;4:452.

  108. 108.

    Wallace BD, Wang H, Lane KT, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330:831–835.

  109. 109.

    Chamseddine AN, Ducreux M, Armand JP, et al. Intestinal bacterial beta-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacol Ther. 2019;199:1–15.

  110. 110.

    Jariwala PB, Pellock SJ, Goldfarb D, et al. Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling. ACS Chem Biol. 2019;15:217–225.

  111. 111.

    LoGuidice A, Wallace BD, Bendel L, Redinbo MR, Boelsterli UA. Pharmacologic targeting of bacterial beta-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther. 2012;341:447–454.

  112. 112.

    Yauw STK, Arron M, Lomme R, et al. Microbial glucuronidase inhibition reduces severity of diclofenac-induced anastomotic leak in rats. Surg Infect (Larchmt). 2018;19:417–423.

  113. 113.

    Taylor MR, Flannigan KL, Rahim H, et al. Vancomycin relieves mycophenolate mofetil-induced gastrointestinal toxicity by eliminating gut bacterial beta-glucuronidase activity. Sci Adv. 2019;5:eaax2358.

  114. 114.

    Ervin SM, Hanley RP, Lim L, et al. Targeting regorafenib-induced toxicity through inhibition of gut microbial beta-glucuronidases. ACS Chem Biol. 2019;14:2737–2744.

  115. 115.

    Collins FS, Varmus H. A new initiative on precision medicine. New England J Med. 2015;372:793–795.

  116. 116.

    Kuntz TM, Gilbert JA. Introducing the microbiome into precision medicine. Trends Pharm Sci. 2017;38:81–91.

  117. 117.

    Kashyap PC, Chia N, Nelson H, Segal E, Elinav E. Microbiome at the frontier of personalized medicine. Mayo Clin Proc. 2017;92:1855–1864.

  118. 118.

    Petrosino JF. The microbiome in precision medicine: the way forward. Genome Med. 2018;10:12.

  119. 119.

    Lam KN, Alexander M, Turnbaugh PJ. Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes. Cell Host Microbe. 2019;26:22–34.

Download references

Acknowledgments

We sincerely apologize to colleagues whose work we could not include due to space constraints. SME is supported by funds from National Science Foundation GRFP (DGS-1650116). APB is supported by Pilot and Feasibility funds from P30 DK034987. The authors acknowledge Drs. Seth Crockett and Matthew Redinbo for critical reading of this manuscript.

Author information

Correspondence to Aadra P. Bhatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interset.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ervin, S.M., Ramanan, S.V. & Bhatt, A.P. Relationship Between the Gut Microbiome and Systemic Chemotherapy. Dig Dis Sci 65, 874–884 (2020). https://doi.org/10.1007/s10620-020-06119-3

Download citation

Keywords

  • Microbiome
  • Chemotherapy
  • Gastrointestinal toxicity