CDX-2 Expression in Esophageal Biopsies Without Goblet Cell Intestinal Metaplasia May Be Predictive of Barrett’s Esophagus

  • James Saller
  • Sameer Al Diffalha
  • Kevin Neill
  • Rahill A. Bhaskar
  • Cecilia Oliveri
  • David Boulware
  • Henry Levine
  • Isaac Kalvaria
  • F. Scott Corbett
  • Arun Khazanchi
  • Jason Klapman
  • Domenico CoppolaEmail author
Original Article



CDX-2 is a nuclear homeobox transcription factor not normally expressed in esophageal and gastric epithelia, reported to highlight intestinal metaplasia (IM) in the esophagus. Pathological absence of goblet cells at initial screening via hematoxylin and eosin (HE) and alcian blue (AB) staining results in patient exclusion from surveillance programs.


This study aimed to determine whether non-goblet cell IM, as defined by CDX-2 positivity, can be considered to be a precursor to Barrett’s esophagus (BE).


This study received IRB approval (17,284). Patients with gastroesophageal reflux disease (n = 181) who underwent upper-gastrointestinal endoscopy with biopsies of the distal esophagus to rule out BE using HE/AB staining and CDX-2 immunostaining were followed for 3 years. Initial and follow-up staining results were evaluated for age/sex.


Differences between development of goblet cell IM in CDX-2-negative and CDX-2-positive groups were evaluated. A Kaplan–Meier curve showed that, out of the 134 patients initially positive for CDX-2, 25 (18.7%) had developed goblet cell IM after 2 years and 106 (79.1%) after 3 years. Conversely, of the 47 patients initially negative for CDX-2, 8 (17.9%) developed goblet cell IM after 24 months and only 11 (23.8%) after 40 to 45 months (P = .049; age-adjusted Cox proportional hazard regression model).


In cases that are initially AB negative and CDX-2 positive, CDX-2 was demonstrated to have a potential prognostic utility for early detection of progression to BE. CDX-2 expression is significantly predictive for risk of goblet cell IM development 40 to 45 months after initial biopsy.


Barrett’s esophagus Immunohistochemistry CDX-2 Dysplasia 



Alcian blue


Barrett’s esophagus


Esophageal adenocarcinoma


Gastroesophageal reflux disease


Hematoxylin and eosin


Intestinal metaplasia


Transcription factor



We thank Paul Fletcher and Daley Drucker (H. Lee Moffitt Cancer Center and Research Institution) for editorial assistance. They were not compensated for their assistance beyond their regular salaries. This work has been supported in part by the Tissue Core Facility at the H. Lee Moffitt Cancer Center and Research Institute: an NCI-designated Comprehensive Cancer Center (P30-CA076292).

Author’s contribution

JS, SAD, KN, RB, and CO collected material used for analyses and reviewed pathology reports and tabulated data; JS, SAD, and RB drafted the manuscript; SAD, KN, CO, and DC reviewed the HE slides and the AB/CDX-2 stains, confirming the pathological diagnoses; DB ran the biostatical analyses; HL, IK, FSC, JK, and AK reviewed the manuscript and provided clinical input and patient data; DC conceptualized the hypothesis and study design and finalized the manuscript.


This work has been supported in part by the Tissue Core Facility at the H. Lee Moffitt Cancer Center and Research Institute: an NCI-designated Comprehensive Cancer Center (P30-CA076292).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.


  1. 1.
    Zhang Y. Epidemiology of esophageal cancer. World J Gastroenterol. 2013;19:5598–5606.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:390–405.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Playford RJ. New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett’s oesophagus. Gut. 2006;55:442.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Younes M, Ertan A, Ergun G, et al. Goblet cell mimickers in esophageal biopsies are not associated with an increased risk for dysplasia. Arch Pathol Lab Med. 2007;131:571–575.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Shi XY, Bhagwandeen B, Leong AS. CDX2 and villin are useful markers of intestinal metaplasia in the diagnosis of Barrett esophagus. Am J Clin Pathol. 2008;129:571–577.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhang X, Westerhoff M, Hart J. Expression of SOX9 and CDX2 in nongoblet columnar-lined esophagus predicts the detection of Barrett’s esophagus during follow-up. Mod Pathol. 2015;28:654–661.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Findlay JM, Middleton MR, Tomlinson I. Genetic biomarkers of Barrett’s esophagus susceptibility and progression to dysplasia and cancer: a systematic review and meta-analysis. Dig Dis Sci. 2016;61:25–38. Scholar
  9. 9.
    Varghese S, Lao-Sirieix P, Fitzgerald RC. Identification and clinical implementation of biomarkers for Barrett’s esophagus. Gastroenterology. 2012;142:e432.CrossRefGoogle Scholar
  10. 10.
    Kaz AM, Grady WM, Stachler MD, Bass AJ. Genetic and epigenetic alterations in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin N Am. 2015;44:473–489.CrossRefGoogle Scholar
  11. 11.
    Grady WM, Yu M. Molecular evolution of metaplasia to adenocarcinoma in the esophagus. Dig Dis Sci. 2018;63:2059–2069. Scholar
  12. 12.
    Naini BV, Souza RF, Odze RD. Barrett’s esophagus: a comprehensive and contemporary review for pathologists. Am J Surg Pathol. 2016;40:e45–e66.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Martinez P, Mallo D, Paulson TG, et al. Evolution of Barrett’s esophagus through space and time at single-crypt and whole-biopsy levels. Nat Commun. 2018;9:794.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Buas MF, Onstad L, Levine DM, et al. MiRNA-related SNPs and risk of esophageal adenocarcinoma and Barrett’s esophagus: post genome-wide association analysis in the BEACON consortium. PLoS ONE. 2015;10:e0128617.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Clark RJ, Craig MP, Agrawal S, Kadakia M. MicroRNA involvement in the onset and progression of Barrett’s esophagus: a systematic review. Oncotarget. 2018;9:8179–8196.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gregson EM, Bornschein J, Fitzgerald RC. Genetic progression of Barrett’s oesophagus to oesophageal adenocarcinoma. Br J Cancer. 2016;115:403–410.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Drahos J, Schwameis K, Orzolek LD, et al. MicroRNA profiles of Barrett’s esophagus and esophageal adenocarcinoma: differences in glandular non-native epithelium. Cancer Epidemiol Biomark Prev. 2016;25:429–437.CrossRefGoogle Scholar
  18. 18.
    Bansal A, Hong X, Lee IH, et al. MicroRNA expression can be a promising strategy for the detection of Barrett’s esophagus: a pilot study. Clin Transl Gastroenterol. 2014;5:e65.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Matsui D, Zaidi AH, Martin SA, et al. Primary tumor microRNA signature predicts recurrence and survival in patients with locally advanced esophageal adenocarcinoma. Oncotarget. 2016;7:81281–81291.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mourikis T, Benedetti L, Foxall E, et al. Patient-specific detection of cancer genes reveals recurrently perturbed processes in esophageal adenocarcinoma. bioRxiv. 2018;1:321612.Google Scholar
  21. 21.
    Aichler M, Walch A. In brief: the (molecular) pathogenesis of Barrett’s oesophagus. J Pathol. 2014;232:383–385.PubMedCrossRefGoogle Scholar
  22. 22.
    Evans JA, McDonald SA. The complex, clonal, and controversial nature of Barrett’s Esophagus the complex, clonal, and controversial nature of Barrett’s Esophagus. Adv Exp Med Biol. 2016;908:27–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Biswas S, Quante M, Leedham S, Jansen M. The metaplastic mosaic of Barrett’s oesophagus. Virchows Arch. 2018;472:43–54.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bansal A, Lee IH, Hong X, et al. Discovery and validation of Barrett’s esophagus microRNA transcriptome by next generation sequencing. PLoS ONE. 2013;8:e54240.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    McDonald SA, Graham TA, Lavery DL, Wright NA, Jansen M. The Barrett’s gland in phenotype space. Cell Mol Gastroenterol Hepatol. 2015;1:41–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu Y, Sethi NS, Hinoue T, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33:e728.Google Scholar
  27. 27.
    Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–175.CrossRefGoogle Scholar
  28. 28.
    van Nistelrooij AM, van Marion R, Koppert LB, et al. Molecular clonality analysis of esophageal adenocarcinoma by multiregion sequencing of tumor samples. BMC Res Notes. 2017;10:144.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nones K, Waddell N, Wayte N, et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014;5:5224.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dulak AM, Schumacher SE, van Lieshout J, et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Can Res. 2012;72:4383–4393.CrossRefGoogle Scholar
  31. 31.
    Dulak AM, Stojanov P, Peng S, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45:478–486.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    James R, Kazenwadel J. Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem. 1991;266:3246–3251.PubMedGoogle Scholar
  33. 33.
    James R, Erler T, Kazenwadel J. Structure of the murine homeobox gene cdx-2. Expression in embryonic and adult intestinal epithelium. J Biol Chem. 1994;269:15229–15237.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Beck F, Erler T, Russell A, James R. Expression of CDX-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev Dyn. 1995;204:219–227.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Stringer EJ, Duluc I, Saandi T, et al. CDX2 determines the fate of postnatal intestinal endoderm. Development (Cambridge, England). 2012;139:465–474.CrossRefGoogle Scholar
  36. 36.
    Huo X, Zhang HY, Zhang XI, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett’s esophagus. Gastroenterology. 2010;139:194.e191–203.e191.CrossRefGoogle Scholar
  37. 37.
    Selves J, Long-Mira E, Mathieu MC, Rochaix P, Ilie M. Immunohistochemistry for diagnosis of metastatic carcinomas of unknown primary site. Cancers. 2018;10:108.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Phillips RW, Frierson HF Jr, Moskaluk CA. CDX2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol. 2003;27:1442–1447.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Colleypriest BJ, Farrant JM, Slack JM, Tosh D. The role of CDX2 in Barrett’s metaplasia. Biochem Soc Trans. 2010;38:364–369.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Groisman GM, Amar M, Meir A. Expression of the intestinal marker CDX2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod Pathol. 2004;17:1282–1288.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Platet N, Hinkel I, Richert L, et al. The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Lett. 2017;386:57–64.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hryniuk A, Grainger S, Savory JG, Lohnes D. CDX1 and CDX2 function as tumor suppressors. J Biol Chem. 2014;289:33343–33354.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Witek ME, Nielsen K, Walters R, et al. The putative tumor suppressor CDX2 is overexpressed by human colorectal adenocarcinomas. Clin Cancer Res. 2005;11:8549–8556.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Freund JN, Duluc I, Reimund JM, Gross I, Domon-Dell C. Extending the functions of the homeotic transcription factor CDX2 in the digestive system through nontranscriptional activities. World J Gastroenterol. 2015;21:1436–1443.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bae JM, Lee TH, Cho NY, Kim TY, Kang GH. Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients. World J Gastroenterol. 2015;21:1457–1467.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Jun SY, Eom DW, Park H, et al. Prognostic significance of CDX2 and mucin expression in small intestinal adenocarcinoma. Mod Pathol. 2014;27:1364–1374.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hayes S, Ahmed S, Clark P. Immunohistochemical assessment for CDX2 expression in the Barrett metaplasia-dysplasia-adenocarcinoma sequence. J Clin Pathol. 2011;64:110–113.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Barros R, Pereira D, Calle C, et al. Dynamics of SOX2 and CDX2 expression in Barrett’s mucosa. Dis Mark. 2016;2016:1532791.Google Scholar
  49. 49.
    Johnson DR, Abdelbaqui M, Tahmasbi M, et al. CDX2 protein expression compared to alcian blue staining in the evaluation of esophageal intestinal metaplasia. World J Gastroenterol. 2015;21:2770–2776.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kerkhof M, Bax DA, Moons LM, et al. Does CDX2 expression predict Barrett’s metaplasia in oesophageal columnar epithelium without goblet cells? Aliment Pharmacol Ther. 2006;24:1613–1621.PubMedCrossRefGoogle Scholar
  51. 51.
    Streher LA, Campos V, da Silva Mazzini G, et al. CDX2 overexpression in Barrett’s esophagus and esophageal adenocarcinoma. J Cancer Ther. 2014;5:657.CrossRefGoogle Scholar
  52. 52.
    Saad RS, Ghorab Z, Khalifa MA, Xu M. CDX2 as a marker for intestinal differentiation: its utility and limitations. World J Gastrointest Surg. 2011;3:159–166.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE. 2014;9:e96801.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Aeffner F, Wilson K, Martin NT, et al. The gold standard paradox in digital image analysis: manual versus automated scoring as ground truth. Arch Pathol Lab Med. 2017;141:1267–1275.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bayrak R, Haltas H, Yenidunya S. The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7-/20 + phenotype is more specific than CDX2 antibody. Diagn Pathol. 2012;7:9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • James Saller
    • 1
  • Sameer Al Diffalha
    • 1
  • Kevin Neill
    • 1
  • Rahill A. Bhaskar
    • 1
  • Cecilia Oliveri
    • 5
  • David Boulware
    • 2
  • Henry Levine
    • 5
  • Isaac Kalvaria
    • 6
  • F. Scott Corbett
    • 6
  • Arun Khazanchi
    • 6
  • Jason Klapman
    • 3
  • Domenico Coppola
    • 1
    • 4
    Email author
  1. 1.Departments of Anatomic PathologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.BiostatisticsH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  3. 3.EndoscopyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  4. 4.Tumor BiologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  5. 5.Center For Digestive HealthOrlandoUSA
  6. 6.Florida Digestive Health SpecialistsLakewood RanchUSA

Personalised recommendations