The Long Road to the Development of Effective Therapies for the Short Gut Syndrome: A Personal Perspective

  • Palle Bekker JeppesenEmail author


The ability to provide parenteral support represents a revolutionary change in medical therapy for patients with temporary and inadequate intestinal absorptive capacity or for patients with chronic intestinal failure due to digestive diseases. Nevertheless, due to the rarity of intestinal failure, a de facto policy of “discrimination by organ failure treatment” exists in many countries whereby this problem is under-recognized and under-treated. With the increasing recognition of the pathophysiological consequences of intestinal resection and the occurrence of new pro-adaptive treatments for patients suffering from short bowel syndrome, this review reflects on the history of developments in this area and discusses current practice and future directions of the field.


Intestinal resection Parenteral support Malabsorption Adaptation Glucagon-like peptide 2 Glucagon-like peptide 1 Somatostatin Growth hormone 


Compliance with Ethical Standards

Conflict of interest

P.B.J. has received grants/honoraria or consultation fees from: The Novo Nordisk Foundation, NPS Pharmaceuticals, Shire, Takeda, Ferring, GlyPharma, Therachon, VectiveBio, Naia Pharma, Albumedix, Baxter, Fresenius Kabi, ArTara Therapeutics.


  1. 1.
    Kaunitz JD. Introduction to the “paradigm shifts in perspective” series. Dig Dis Sci. 2013;58:1825–1826. Scholar
  2. 2.
    Pironi L, Arends J, Baxter J, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr. 2015;34:171–180.CrossRefGoogle Scholar
  3. 3.
    Dibb M, Teubner A, Theis V, Shaffer J, Lal S. Review article: the management of long-term parenteral nutrition. Aliment Pharmacol Ther. 2013;37:587–603.CrossRefGoogle Scholar
  4. 4.
    Moreno JM, Shaffer J, Staun M, et al. Survey on legislation and funding of home artificial nutrition in different European countries. Clin Nutr. 2001;20:117–123.CrossRefGoogle Scholar
  5. 5.
    Van Gossum A, Bakker H, De Francesco A, et al. Home parenteral nutrition in adults: a multicentre survey in Europe in 1993. Clin Nutr. 1996;15:53–59.CrossRefGoogle Scholar
  6. 6.
    Brandt CF, Tribler S, Hvistendahl M, et al. Home parenteral nutrition in adult patients with chronic intestinal failure: catheter-related complications over 4 decades at the Main Danish Tertiary Referral Center. J Parenter Enter Nutr. 2018;42:95–103.Google Scholar
  7. 7.
    Pironi L, Steiger E, Brandt C, Joly F, Wanten G, Chambrier C, et al. Home parenteral nutrition provision modalities for chronic intestinal failure in adult patients: an international survey. Clin Nutr. 2019.
  8. 8.
    Raman M, Gramlich L, Whittaker S, Allard JP. Canadian home total parenteral nutrition registry: preliminary data on the patient population. Can J Gastroenterol. 2007;21:643–648.CrossRefGoogle Scholar
  9. 9.
    Howard L. A global perspective of home parenteral and enteral nutrition. Nutrition. 2000;16:625–628.CrossRefGoogle Scholar
  10. 10.
    Gillanders L, Angstmann K, Ball P, et al. AuSPEN clinical practice guideline for home parenteral nutrition patients in Australia and New Zealand. Nutrition. 2008;24:998–1012.CrossRefGoogle Scholar
  11. 11.
    Gillanders L, Baxter J, Ball P, Merrie A, Mckee RF. Benchmarking home parenteral nutrition in Scotland and New Zealand: disparities revealed. N Z Med J. 2008;121:28–33.Google Scholar
  12. 12.
    Takagi Y, Okada A, Sato T, et al. Report on the first annual survey of home parenteral nutrition in Japan. Surg Today. 1995;25:193–201.CrossRefGoogle Scholar
  13. 13.
    Zhu W, Li N, Ren J, Gu J, Jiang J, Li J. Rehabilitation therapy for short bowel syndrome. Chin Med J (Engl). 2002;115:776–778.Google Scholar
  14. 14.
    Jeppesen PB, Langholz E, Mortensen PB. Quality of life in patients receiving home parenteral nutrition. Gut. 1999;44:844–852.CrossRefGoogle Scholar
  15. 15.
    Richards DM, Irving MH. Cost-utility analysis of home parenteral nutrition. Br J Surg. 1996;83:1226–1229.CrossRefGoogle Scholar
  16. 16.
    Hurt RT, Steiger E. Early history of home parenteral nutrition: from hospital to home. Nutr Clin Pract. 2018;33:598–613.CrossRefGoogle Scholar
  17. 17.
    Jeppesen PB, Staun M, Mortensen PB. Adult patients receiving home parenteral nutrition in Denmark from 1991 to 1996: who will benefit from intestinal transplantation? Scand J Gastroenterol. 1998;33:839–846.CrossRefGoogle Scholar
  18. 18.
    Laupacis A, Keown P, Pus N, et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int. 1996;50:235–242.CrossRefGoogle Scholar
  19. 19.
    Noordzij M, Kramer A, Abad Diez JM, et al. Renal replacement therapy in Europe: a summary of the 2011 ERA-EDTA Registry Annual Report. Clin Kidney J. 2014;7:227–238.CrossRefGoogle Scholar
  20. 20.
    Howard L, Heaphey LL, Timchalk M. A review of the current national status of home parenteral and enteral nutrition from the provider and consumer perspective. J Parenter Enter Nutr. 1986;10:416–424.CrossRefGoogle Scholar
  21. 21.
    Howard L, Ament M, Fleming CR, Shike M, Steiger E. Current use and clinical outcome of home parenteral and enteral nutrition therapies in the United States. Gastroenterology. 1995;109:355–365.CrossRefGoogle Scholar
  22. 22.
    Pironi L, Hebuterne X, Van Gossum A, et al. Candidates for intestinal transplantation: a multicenter survey in Europe. Am J Gastroenterol. 2006;101:1633–1643.CrossRefGoogle Scholar
  23. 23.
    Tribler S, Brandt CF, Petersen AH, et al. Taurolidine-citrate-heparin lock reduces catheter-related bloodstream infections in intestinal failure patients dependent on home parenteral support: a randomized, placebo-controlled trial. Am J Clin Nutr. 2017;106:839–848.Google Scholar
  24. 24.
    Jeppesen PB, Pertkiewicz M, Messing B, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143:1473–1481.CrossRefGoogle Scholar
  25. 25.
    Sudan D, Dibaise J, Torres C, et al. A multidisciplinary approach to the treatment of intestinal failure. J Gastrointest Surg. 2005;9:165–176.CrossRefGoogle Scholar
  26. 26.
    Rhoda KM, Parekh NR, Lennon E, et al. The multidisciplinary approach to the care of patients with intestinal failure at a tertiary care facility. Nutr Clin Pract. 2010;25:183–191.CrossRefGoogle Scholar
  27. 27.
    Jeppesen PB. The non-surgical treatment of adult patients with short bowel syndrome. Expert Opin Orphan Drugs. 2013;1:528–535.Google Scholar
  28. 28.
    Jeppesen PB. Short bowel syndrome—characterisation of an orphan condition with many phenotypes. Expert Opin Orphan Drugs. 2013;1:515–525.CrossRefGoogle Scholar
  29. 29.
    Chaudhri O, Small C, Bloom S. Gastrointestinal hormones regulating appetite. Philos Trans R Soc Lond B Biol Sci. 2006;361:1187–1209.CrossRefGoogle Scholar
  30. 30.
    Buchan AM, Polak JM. The classification of the human gastroenteropancreatic endocrine cells. Invest Cell Pathol. 1980;3:51–71.Google Scholar
  31. 31.
    Gershon MD. The enteric nervous system: a second brain. Hosp Pract 1999;34:31–38, 41.Google Scholar
  32. 32.
    Nightingale JM, Kamm MA, van der Sijp JR, Ghatei MA, Bloom SR, Lennard-Jones JE. Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the ‘colonic brake’ to gastric emptying. Gut. 1996;39:267–272.CrossRefGoogle Scholar
  33. 33.
    Jeppesen PB, Hartmann B, Hansen BS, Thulesen J, Holst JJ, Mortensen PB. Impaired meal stimulated glucagon-like peptide 2 response in ileal resected short bowel patients with intestinal failure. Gut. 1999;45:559–563.CrossRefGoogle Scholar
  34. 34.
    Nordgaard I, Hansen BS, Mortensen PB. Importance of colonic support for energy absorption as small- bowel failure proceeds. Am J Clin Nutr. 1996;64:222–231.CrossRefGoogle Scholar
  35. 35.
    Jeppesen PB, Hartmann B, Thulesen J, et al. Elevated plasma glucagon-like peptide 1 and 2 concentrations in ileum resected short bowel patients with a preserved colon. Gut. 2000;47:370–376.CrossRefGoogle Scholar
  36. 36.
    Amiot A, Messing B, Corcos O, Panis Y, Joly F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin Nutr. 2013;32:368–374.CrossRefGoogle Scholar
  37. 37.
    Dharmsathaphorn K, Gorelick FS, Sherwin RS, Cataland S, Dobbins JW. Somatostatin decreases diarrhea in patients with the short-bowel syndrome. J Clin Gastroenterol. 1982;4:521–524.CrossRefGoogle Scholar
  38. 38.
    Gyr KE, Whitehouse I, Beglinger C, Kohler E, Dettwiler S, Fried M. Human pharmacological effects of SMS 201-995 on gastric secretion. Scand J Gastroenterol Suppl. 1986;119:96–102.CrossRefGoogle Scholar
  39. 39.
    Creutzfeldt W, Lembcke B, Folsch UR, Schleser S, Koop I. Effect of somatostatin analogue (SMS 201-995, Sandostatin) on pancreatic secretion in humans. Am J Med. 1987;82:49–54.CrossRefGoogle Scholar
  40. 40.
    Reichlin S. Somatostatin (second of two parts). N Engl J Med. 1983;309:1556–1563.CrossRefGoogle Scholar
  41. 41.
    Lembcke B, Creutzfeldt W, Schleser S, Ebert R, Shaw C, Koop I. Effect of the somatostatin analogue sandostatin (SMS 201-995) on gastrointestinal, pancreatic and biliary function and hormone release in normal men. Digestion. 1987;36:108–124.CrossRefGoogle Scholar
  42. 42.
    Dueno MI, Bai JC, Santangelo WC, Krejs GJ. Effect of somatostatin analog on water and electrolyte transport and transit time in human small bowel. Dig Dis Sci. 1987;32:1092–1096. Scholar
  43. 43.
    Davis GR, Camp RC, Raskin P, Krejs GJ. Effect of somatostatin infusion on jejunal water and electrolyte transport in a patient with secretory diarrhea due to malignant carcinoid syndrome. Gastroenterology. 1980;78:346–349.CrossRefGoogle Scholar
  44. 44.
    Lucey MR, Yamada T. Biochemistry and physiology of gastrointestinal somatostatin. Dig Dis Sci. 1989;34:5S–13S Scholar
  45. 45.
    Bass BL, Fischer BA, Richardson C, Harmon JW. Somatostatin analogue treatment inhibits post-resectional adaptation of the small bowel in rats. Am J Surg. 1991;161:107–111.CrossRefGoogle Scholar
  46. 46.
    O’Keefe SJ, Haymond MW, Bennet WM, Oswald B, Nelson DK, Shorter RG. Long-acting somatostatin analogue therapy and protein metabolism in patients with jejunostomies. Gastroenterology. 1994;107:379–388.CrossRefGoogle Scholar
  47. 47.
    Williams NS, Cooper JC, Axon AT, King RF, Barker M. Use of a long acting somatostatin analogue in controlling life threatening ileostomy diarrhoea. Br Med J Clin Res Ed. 1984;289:1027–1028.CrossRefGoogle Scholar
  48. 48.
    Rodrigues CA, Lennard Jones JE, Thompson DG, Farthing MJ. The effects of octreotide, soy polysaccharide, codeine and loperamide on nutrient, fluid and electrolyte absorption in the short-bowel syndrome. Aliment Pharmacol Ther. 1989;3:159–169.CrossRefGoogle Scholar
  49. 49.
    Nightingale JM, Walker ER, Burnham WR, Farthing MJ, Lennard Jones JE. Octreotide (a somatostatin analogue) improves the quality of life in some patients with a short intestine. Aliment Pharmacol Ther. 1989;3:367–373.CrossRefGoogle Scholar
  50. 50.
    Rosenberg L, Brown RA. Sandostatin in the management of nonendocrine gastrointestinal and pancreatic disorders: a preliminary study. Can J Surg. 1991;34:223–229.Google Scholar
  51. 51.
    Shaffer JL, O’Hanrahan T, Rowntree S, Shipley K, Irving MH. Does somatostatin analogue (SMS 201-995) reduce high output stoma effluent? A controlled trial. Gut. 1988;29:A1432–A1433.Google Scholar
  52. 52.
    Gilsdorf RB, Gilles P, Gigliotti LM. Somatostatin effect on gastrointestinal losses in patients with short bowel syndrome. A.S.P.E.N.13th Clinical Congress Abstracts, 478; 1989.Google Scholar
  53. 53.
    Ladefoged K, Christensen KC, Hegnhoj J, Jarnum S. Effect of a long acting somatostatin analogue SMS 201-995 on jejunostomy effluents in patients with severe short bowel syndrome [see comments]. Gut. 1989;30:943–949.CrossRefGoogle Scholar
  54. 54.
    O’Keefe SJ, Peterson ME, Fleming CR. Octreotide as an adjunct to home parenteral nutrition in the management of permanent end-jejunostomy syndrome. J Parenter Enter Nutr. 1994;18:26–34.CrossRefGoogle Scholar
  55. 55.
    Nehra V, Camilleri M, Burton D, Oenning L, Kelly DG. An open trial of octreotide long-acting release in the management of short bowel syndrome. Am J Gastroenterol. 2001;96:1494–1498.CrossRefGoogle Scholar
  56. 56.
    Pironi L, Arends J, Bozzetti F, et al. ESPEN guidelines on chronic intestinal failure in adults. Clin Nutr. 2016;35:247–307.CrossRefGoogle Scholar
  57. 57.
    Byrne TA, Morrissey TB, Nattakom TV, Ziegler TR, Wilmore DW. Growth hormone, glutamine, and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. J Parenter Enter Nutr. 1995;19:296–302.CrossRefGoogle Scholar
  58. 58.
    Byrne TA, Persinger RL, Young LS, Ziegler TR, Wilmore DW. A new treatment for patients with short-bowel syndrome. Growth hormone, glutamine, and a modified diet. Ann Surg. 1995;222:243–254.CrossRefGoogle Scholar
  59. 59.
    Jeppesen PB, Mortensen PB. Intestinal failure defined by measurements of intestinal energy and wet weight absorption. Gut. 2000;46:701–706.CrossRefGoogle Scholar
  60. 60.
    Scolapio JS, Camilleri M, Fleming CR, et al. Effect of growth hormone, glutamine, and diet on adaptation in short-bowel syndrome: a randomized, controlled study. Gastroenterology. 1997;113:1074–1081.CrossRefGoogle Scholar
  61. 61.
    Szkudlarek J, Jeppesen PB, Mortensen PB. Effect of high dose growth hormone with glutamine and no change in diet on intestinal absorption in short bowel patients: a randomised, double blind, crossover, placebo controlled study. Gut. 2000;47:199–205.CrossRefGoogle Scholar
  62. 62.
    Ellegard L, Bosaeus I, Nordgren S, Bengtsson BA. Low-dose recombinant human growth hormone increases body weight and lean body mass in patients with short bowel syndrome. Ann Surg. 1997;225:88–96.CrossRefGoogle Scholar
  63. 63.
    Seguy D, Vahedi K, Kapel N, Souberbielle JC, Messing B. Low-dose growth hormone in adult home parenteral nutrition-dependent short bowel syndrome patients: a positive study. Gastroenterology. 2003;124:293–302.CrossRefGoogle Scholar
  64. 64.
    Byrne TA, Wilmore DW, Iyer K, et al. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome: a prospective, randomized, placebo-controlled, double-blind clinical trial. Ann Surg. 2005;242:655–661.CrossRefGoogle Scholar
  65. 65.
    Jeppesen PB, Szkudlarek J, Hoy CE, Mortensen PB. Effect of high-dose growth hormone and glutamine on body composition, urine creatinine excretion, fatty acid absorption, and essential fatty acids status in short bowel patients: a randomized, double-blind, crossover, placebo-controlled study. Scand J Gastroenterol. 2001;36:48–54.Google Scholar
  66. 66.
    Wales PW, Nasr A, de Silva N, Yamada J. Human growth hormone and glutamine for patients with short bowel syndrome. Cochrane Database Syst Rev 2010; CD006321.Google Scholar
  67. 67.
    Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature. 1983;302:716–718.CrossRefGoogle Scholar
  68. 68.
    Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79:616–619.CrossRefGoogle Scholar
  69. 69.
    Holst JJ, Orskov C, Nielsen OV, Schwartz TW. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987;211:169–174.CrossRefGoogle Scholar
  70. 70.
    Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet. 1987;2:1300–1304.CrossRefGoogle Scholar
  71. 71.
    Drucker DJ, Lee YC, Asa SL, Brubaker PL. Inhibition of pancreatic glucagon gene expression in mice bearing a subcutaneous glucagon-producing GLUTag transplantable tumor. Mol Endocrinol. 1992;6:2175–2184.Google Scholar
  72. 72.
    Gleeson MH, Bloom SR, Polak JM, Henry K, Dowling RH. An endocrine tumour in kidney affecting small bowel structure, motility, and function. Gut. 1970;11:1060.Google Scholar
  73. 73.
    Jones B, Fishman EK, Bayless TM, Siegelman SS. Villous hypertrophy of the small bowel in a patient with glucagonoma. J Comput Assist Tomogr. 1983;7:334–337.CrossRefGoogle Scholar
  74. 74.
    Stevens FM, Flanagan RW, O’Gorman D, Buchanan KD. Glucagonoma syndrome demonstrating giant duodenal villi. Gut. 1984;25:784–791.CrossRefGoogle Scholar
  75. 75.
    Myojo S, Tsujikawa T, Sasaki M, Fujiyama Y, Bamba T. Trophic effects of glicentin on rat small-intestinal mucosa in vivo and in vitro. J Gastroenterol. 1997;32:300–305.CrossRefGoogle Scholar
  76. 76.
    Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon- like peptide 2. Proc Natl Acad Sci USA. 1996;93:7911–7916.CrossRefGoogle Scholar
  77. 77.
    Tsai CH, Hill M, Drucker DJ. Biological determinants of intestinotrophic properties of GLP-2 in vivo. Am J Physiol. 1997;272:G662–G668.Google Scholar
  78. 78.
    Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol. 1997;273:E77–E84.CrossRefGoogle Scholar
  79. 79.
    Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993;214:829–835.CrossRefGoogle Scholar
  80. 80.
    Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995;136:3585–3596.CrossRefGoogle Scholar
  81. 81.
    Drucker DJ, Shi Q, Crivici A, et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol. 1997;15:673–677.CrossRefGoogle Scholar
  82. 82.
    Brubaker PL, Izzo A, Hill M, Drucker DJ. Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. Am J Physiol. 1997;272:E1050–E1058.Google Scholar
  83. 83.
    Scott RB, Kirk D, MacNaughton WK, Meddings JB. GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol. 1998;275:G911–G921.CrossRefGoogle Scholar
  84. 84.
    Jeppesen PB, Hartmann B, Thulesen J, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120:806–815.CrossRefGoogle Scholar
  85. 85.
    Jeppesen PB, Lund P, Gottschalck IB, et al. Short bowel patients treated for 2 years with glucagon-like Peptide 2: effects on intestinal morphology and absorption, renal function, bone and body composition, and muscle function. Gastroenterol Res Pract. 2009;2009:616054.Google Scholar
  86. 86.
    Jeppesen PB, Lund P, Gottschalck IB, et al. Short bowel patients treated for 2 years with glucagon-like peptide 2 (GLP-2): compliance, safety, and effects on quality of life. Gastroenterol Res Pract. 2009;2009:425759.Google Scholar
  87. 87.
    Jeppesen PB, Blosch CM, Lopansri JB, et al. ALX-0600, a dipeptidyl peptidase-IV resistant glucagon-like peptide-2 (GLP-2) analog, improves intestinal function in short bowel syndrome (SBS) patients with a jejunostomy. Gastroenterology. 2002;122:A191.Google Scholar
  88. 88.
    Jeppesen PB, Sanguinetti EL, Buchman A, et al. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut. 2005;54:1224–1231.CrossRefGoogle Scholar
  89. 89.
    Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O’Keefe SJ. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60:902–914.CrossRefGoogle Scholar
  90. 90.
    O’Keefe SJ, Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B. Safety and efficacy of teduglutide after 52 weeks of treatment in patients with short bowel intestinal failure. Clin Gastroenterol Hepatol. 2013;11:815–823.CrossRefGoogle Scholar
  91. 91.
    Schwartz LK, O’Keefe SJ, Fujioka K, et al. Long-term teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin Transl Gastroenterol. 2016;4:e142.CrossRefGoogle Scholar
  92. 92.
  93. 93.
    Jeppesen PB. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome. Therap Adv Gastroenterol. 2012;5:159–171.CrossRefGoogle Scholar
  94. 94.
    Compher C, Gilroy R, Pertkiewicz M, et al. Maintenance of parenteral nutrition volume reduction, without weight loss, after stopping teduglutide in a subset of patients with short bowel syndrome. J Parenter Enter Nutr. 2011;35:603–609.CrossRefGoogle Scholar
  95. 95.
    Jeppesen PB, Gabe SM, Seidner DL, Lee HM, Olivier C. Factors associated with response to teduglutide in patients with short-bowel syndrome and intestinal failure. Gastroenterology. 2018;154:874–885.CrossRefGoogle Scholar
  96. 96.
    Jeppesen PB, Pertkiewicz M, Forbes A, et al. Quality of life in patients with short bowel syndrome treated with the new glucagon-like peptide-2 analogue teduglutide—analyses from a randomised, placebo-controlled study. Clin Nutr. 2013;32:713–721.CrossRefGoogle Scholar
  97. 97.
    Chen K, Mu F, Xie J, Kelkar SS, Olivier C, Signorovitch J, et al. Impact of teduglutide on quality of life among patients with short bowel syndrome and intestinal failure. J Parenter Enter Nutr 2019.
  98. 98.
    Naimi RM, Hvistendahl M, Enevoldsen LH, et al. Glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, for patients with short bowel syndrome: a randomised phase 2 trial. Lancet Gastroenterol Hepatol. 2019;4:354–363.CrossRefGoogle Scholar
  99. 99.
  100. 100.
    Prahm AP, Brandt CF, Askov-Hansen C, Mortensen PB, Jeppesen PB. The use of metabolic balance studies in the objective discrimination between intestinal insufficiency and intestinal failure. Am J Clin Nutr. 2017;106:831–838.Google Scholar
  101. 101.
    Sueyoshi R, Woods Ignatoski KM, Okawada M, Hartmann B, Holst J, Teitelbaum DH. Stimulation of intestinal growth and function with DPP4 inhibition in a mouse short bowel syndrome model. Am J Physiol Gastrointest Liver Physiol. 2014;307:G410–G419.CrossRefGoogle Scholar
  102. 102.
    Okawada M, Holst JJ, Teitelbaum DH. Administration of a dipeptidyl peptidase IV inhibitor enhances the intestinal adaptation in a mouse model of short bowel syndrome. Surgery. 2011;150:217–223.CrossRefGoogle Scholar
  103. 103.
    Simonsen L, Pilgaard S, Orskov C, et al. Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats. Am J Physiol Gastrointest Liver Physiol. 2007;293:G288–G295.CrossRefGoogle Scholar
  104. 104.
    Kunkel D, Basseri B, Low K, et al. Efficacy of the glucagon-like peptide-1 agonist exenatide in the treatment of short bowel syndrome. Neurogastroenterol Motil. 2011;23:739-e328.CrossRefGoogle Scholar
  105. 105.
    Hvistendahl M, Brandt CF, Tribler S, et al. Effect of liraglutide treatment on jejunostomy output in patients with short bowel syndrome: an open-label pilot study. J Parenter Enter Nutr. 2018;42:112–121.Google Scholar
  106. 106.
    Madsen KB, Askov-Hansen C, Naimi RM, et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1 + GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul Pept. 2013;10:30–39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Gastroenterology and Hepatology 3163RigshospitaletCopenhagenDenmark

Personalised recommendations