Advertisement

Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis

  • Panomwat Amornphimoltham
  • Peter S. T. Yuen
  • Robert A. Star
  • Asada LeelahavanichkulEmail author
Review

Abstract

Sepsis is a life-threatening response to systemic infection. In addition to frank gastrointestinal (GI) rupture/puncture, sepsis can also be exacerbated by translocation of pathogen-associated molecular patterns (PAMPs) from the GI tract to the systemic circulation (gut origin of sepsis). In the human gut, Gram-negative bacteria and Candida albicans are abundant, along with their major PAMP components, endotoxin (LPS) and (1 → 3)-β-d-glucan (BG). Whereas the influence of LPS in bacterial sepsis has been studied extensively, exploration of the role of BG in bacterial sepsis is limited. Post-translocation, PAMPs enter the circulation through lymphatics and the portal vein, and are detoxified and then excreted via the liver and the kidney. Sepsis-induced liver and kidney injury might therefore affect the kinetics and increase circulating PAMPs. In this article, we discuss the current knowledge of the impact of PAMPs from both gut mycobiota and microbiota, including epithelial barrier function and the “gut-liver-kidney axis,” on bacterial sepsis severity.

Keywords

Gut leakage Sepsis (1 → 3)-β-d-glucan Endotoxin Renal failure 

Notes

Funding

Chulalongkorn University Office of International Affairs Scholarship for Short-term Research and Ratchadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–810.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554.CrossRefPubMedGoogle Scholar
  3. 3.
    Bates JM, Akerlund J, Mittge E, et al. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2:371–382.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–818.CrossRefPubMedGoogle Scholar
  5. 5.
    Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–268.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baranova IN, Vishnyakova TG, Bocharov AV, et al. Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60. J Immunol. 2012;188:1371–1380.CrossRefPubMedGoogle Scholar
  7. 7.
    Doi K, Hu X, Yuen PS, et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 2008;73:1266–1274.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Doi K, Leelahavanichkul A, Yuen PS, et al. Animal models of sepsis and sepsis-induced kidney injury. J Clin Investig. 2009;119:2868–2878.CrossRefPubMedGoogle Scholar
  9. 9.
    Leelahavanichkul A, Bocharov AV, Kurlander R, et al. Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice. J Immunol. 2012;188:2749–2758.CrossRefPubMedGoogle Scholar
  10. 10.
    Leelahavanichkul A, Huang Y, Hu X, et al. Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int. 2011;80:1198–1211.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leelahavanichkul A, Worasilchai N, Wannalerdsakun S, et al. Gastrointestinal leakage detected by serum (1 ⟶ 3)-beta-d-glucan in mouse models and a pilot study in patients with sepsis. Shock. 2016;46:506–518.CrossRefPubMedGoogle Scholar
  12. 12.
    Leelahavanichkul A, Yasuda H, Doi K, et al. Methyl-2-acetamidoacrylate, an ethyl pyruvate analog, decreases sepsis-induced acute kidney injury in mice. Am J Physiol Renal Physiol. 2008;295:F1825–F1835.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Panpetch W, Somboonna N, Bulan DE, et al. Gastrointestinal colonization of Candida albicans increases serum (1 ⟶ 3)-beta-d-glucan, without candidemia, and worsens cecal ligation and puncture sepsis in murine model. Shock. 2018;49:62–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–273 (table of contents).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Helander HF, Fandriks L. Surface area of the digestive tract—revisited. Scand J Gastroenterol. 2014;49:681–689.CrossRefPubMedGoogle Scholar
  16. 16.
    Sertaridou E, Papaioannou V, Kolios G, et al. Gut failure in critical care: old school versus new school. Ann Gastroenterol. 2015;28:309–322.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Carrico CJ, Meakins JL, Marshall JC, et al. Multiple-organ-failure syndrome. Arch Surg. 1986;121:196–208.CrossRefPubMedGoogle Scholar
  18. 18.
    MacFie J, O’Boyle C, Mitchell CJ, et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut. 1999;45:223–228.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Panpetch W, Chancharoenthana W, Bootdee K, et al. Lactobacillus rhamnosus L34 attenuates gut translocation-induced bacterial sepsis in murine models of leaky gut. Infect Immun. 2018;86.  https://doi.org/10.1128/IAI.00700-17.
  20. 20.
    Schmid-Schonbein GW, Chang M. The autodigestion hypothesis for shock and multi-organ failure. Ann Biomed Eng. 2014;42:405–414.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang GJ, Gao CF, Wei D, et al. Acute pancreatitis: etiology and common pathogenesis. World J Gastroenterol. 2009;15:1427–1430.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Reintam A, Parm P, Kitus R, et al. Gastrointestinal symptoms in intensive care patients. Acta Anaesthesiol Scand. 2009;53:318–324.CrossRefPubMedGoogle Scholar
  23. 23.
    Fink MP. Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med. 1991;19:627–641.CrossRefPubMedGoogle Scholar
  24. 24.
    Sauerwein H, van Schijndel RS. Perspective: how to evaluate studies on peri-operative nutrition? Considerations about the definition of optimal nutrition for patients and its key role in the comparison of the results of studies on nutritional intervention. Clin Nutr. 2007;26:154–158.CrossRefPubMedGoogle Scholar
  25. 25.
    Doig CJ, Sutherland LR, Sandham JD, et al. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med. 1998;158:444–451.CrossRefPubMedGoogle Scholar
  26. 26.
    Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–2584.CrossRefPubMedGoogle Scholar
  27. 27.
    McKenney ES, Kendall MM. Microbiota and pathogen ‘pas de deux’: setting up and breaking down barriers to intestinal infection. Pathog Dis. 2016;74:ftw051.  https://doi.org/10.1093/femspd/ftw051.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: rethinking the germ theory of disease. Exp Biol Med (Maywood). 2017;242:127–139.CrossRefGoogle Scholar
  29. 29.
    Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–223.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krezalek MA, DeFazio J, Zaborina O, et al. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock. 2016;45:475–482.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE. 2013;8:e71806.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–13785.CrossRefPubMedGoogle Scholar
  33. 33.
    Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–358.CrossRefPubMedGoogle Scholar
  34. 34.
    Gouba N, Drancourt M. Digestive tract mycobiota: a source of infection. Med Mal Infect. 2015;45:9–16.CrossRefPubMedGoogle Scholar
  35. 35.
    Lutzoni F, Kauff F, Cox CJ, et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot. 2004;91:1446–1480.CrossRefPubMedGoogle Scholar
  36. 36.
    Samonis G, Kofteridis DP, Maraki S, et al. Levofloxacin and moxifloxacin increase human gut colonization by Candida species. Antimicrob Agents Chemother. 2005;49:5189.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vardakas KZ, Michalopoulos A, Kiriakidou KG, et al. Candidaemia: incidence, risk factors, characteristics and outcomes in immunocompetent critically ill patients. Clin Microbiol Infect. 2009;15:289–292.CrossRefPubMedGoogle Scholar
  38. 38.
    Qiu X, Zhang F, Yang X, et al. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci Rep. 2015;5:10416.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314–1317.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yamaguchi N, Sonoyama K, Kikuchi H, et al. Gastric colonization of Candida albicans differs in mice fed commercial and purified diets. J Nutr. 2005;135:109–115.CrossRefPubMedGoogle Scholar
  41. 41.
    Samonis G, Maraki S, Barbounakis E, et al. Effects of vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, and telithromycin on murine gut colonization by Candida albicans. Med Mycol. 2006;44:193–196.CrossRefPubMedGoogle Scholar
  42. 42.
    Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–1208.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kett DH, Azoulay E, Echeverria PM, et al. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39:665–670.CrossRefPubMedGoogle Scholar
  44. 44.
    Hedderwick SA, Lyons MJ, Liu M, et al. Epidemiology of yeast colonization in the intensive care unit. Eur J Clin Microbiol Infect Dis. 2000;19:663–670.CrossRefPubMedGoogle Scholar
  45. 45.
    Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 2011;14:386–391.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Miranda L, Van Der Heijden I, Costa S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72:9–16.CrossRefPubMedGoogle Scholar
  47. 47.
    Kollef M, Micek S, Hampton N, et al. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012;54:1739–1746.CrossRefPubMedGoogle Scholar
  48. 48.
    Lau AF, Kabir M, Chen SC, et al. Candida colonization as a risk marker for invasive candidiasis in mixed medical-surgical ICUs: development and evaluation of a simple, standard protocol. J Clin Microbiol. 2015;53:1324–1330.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sam QH, Chang MW, Chai LY. The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host. Int J Mol Sci. 2017;18:E330.  https://doi.org/10.3390/ijms18020330.CrossRefPubMedGoogle Scholar
  50. 50.
    Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-beta-D-glucan. PLoS ONE. 2017;12:1439.CrossRefGoogle Scholar
  51. 51.
    Ilan Y. Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis. World J Gastroenterol. 2012;18:2609–2618.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Juvonen PO, Alhava EM, Takala JA. Gut permeability in patients with acute pancreatitis. Scand J Gastroenterol. 2000;35:1314–1318.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen K, Wang Q, Pleasants RA, et al. Empiric treatment against invasive fungal diseases in febrile neutropenic patients: a systematic review and network meta-analysis. BMC Infect Dis. 2017;17:159.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Plantinga NL, de Smet A, Oostdijk EAN, et al. Selective digestive and oropharyngeal decontamination in medical and surgical ICU patients: individual patient data meta-analysis. Clin Microbiol Infect. 2018;24:505–513.CrossRefPubMedGoogle Scholar
  55. 55.
    Sánchez-Ramírez C, Hípola-Escalada S, Cabrera-Santana M, et al. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Crit Care. 2018;22:141.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Oostdijk EA, Smits L, de Smet AMG, et al. Colistin resistance in gram-negative bacteria during prophylactic topical colistin use in intensive care units. Intensive Care Med. 2013;39:653–660.CrossRefPubMedGoogle Scholar
  57. 57.
    Plantinga NL, Bonten MJ. Selective decontamination and antibiotic resistance in ICUs. Crit Care. 2015;19:259.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-β-D-glucan. PLoS ONE. 2017;12:e0181439.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Worasilchai N, Leelahavanichkul A, Kanjanabuch T, et al. (1 → 3)-beta-d-glucan and galactomannan testing for the diagnosis of fungal peritonitis in peritoneal dialysis patients, a pilot study. Med Mycol. 2015;53:338–346.CrossRefPubMedGoogle Scholar
  60. 60.
    Leelahavanichkul A, Pongpirul K, Thongbor N, et al. (1 → 3)-beta-d-glucan and galactomannan for differentiating chemical “black particles” and fungal particles inside peritoneal dialysis tubing. Perit Dial Int. 2016;36:402–409.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Munford RS. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100:687–698.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Guerville M, Boudry G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol. 2016;311:G1–G15.CrossRefPubMedGoogle Scholar
  63. 63.
    Arana DM, Prieto D, Roman E, et al. The role of the cell wall in fungal pathogenesis. Microb Biotechnol. 2009;2:308–320.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta. 2009;1788:832–841.CrossRefPubMedGoogle Scholar
  65. 65.
    Vojdani A. For the assessment of intestinal permeability, size matters. Altern Ther Health Med. 2013;19:12–24.PubMedGoogle Scholar
  66. 66.
    Dlugosz A, Winckler B, Lundin E, et al. No difference in small bowel microbiota between patients with irritable bowel syndrome and healthy controls. Sci Rep. 2015;5:8508.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hofer U, Schlaepfer E, Baenziger S, et al. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice. PLoS Pathog.. 2010;6:e1000867.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50:90–97.CrossRefPubMedGoogle Scholar
  69. 69.
    Erridge C, Attina T, Spickett CM, et al. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–1292.CrossRefPubMedGoogle Scholar
  70. 70.
    Guler O, Ugras S, Aydin M, et al. The effect of lymphatic blockage on the amount of endotoxin in portal circulation, nitric oxide synthesis, and the liver in dogs with peritonitis. Surg Today. 1999;29:735–740.CrossRefPubMedGoogle Scholar
  71. 71.
    van Deventer SJ, ten Cate JW, Tytgat GN. Intestinal endotoxemia. Clinical significance. Gastroenterology. 1988;94:825–831.CrossRefPubMedGoogle Scholar
  72. 72.
    Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1:16113.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991;31:629–636 (discussion 36-8).CrossRefPubMedGoogle Scholar
  74. 74.
    Yoshida M, Roth RI, Grunfeld C, et al. Soluble (1 → 3)-beta-d-glucan purified from Candida albicans: biologic effects and distribution in blood and organs in rabbits. J Lab Clin Med. 1996;128:103–114.CrossRefPubMedGoogle Scholar
  75. 75.
    Rice PJ, Lockhart BE, Barker LA, et al. Pharmacokinetics of fungal (1-3)-beta-D-glucans following intravenous administration in rats. Int Immunopharmacol. 2004;4:1209–1215.CrossRefPubMedGoogle Scholar
  76. 76.
    Hutter JC, Kim CS. Physiological-based pharmacokinetic modeling of endotoxin in the rat. Toxicol Ind Health. 2014;30:442–453.CrossRefPubMedGoogle Scholar
  77. 77.
    Raggam RB, Fischbach LM, Prattes J, et al. Detection of (1 → 3)-beta-d-glucan in same-day urine and serum samples obtained from patients with haematological malignancies. Mycoses. 2015;58:394–398.CrossRefPubMedGoogle Scholar
  78. 78.
    Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Investig. 2004;113:1390–1397.CrossRefPubMedGoogle Scholar
  79. 79.
    Comper WD. Is the LPS-mediated proteinuria mouse model relevant to human kidney disease? Nat Med. 2009;15:133 (author reply-4).CrossRefPubMedGoogle Scholar
  80. 80.
    Wei C, Moller CC, Altintas MM, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14:55–63.CrossRefPubMedGoogle Scholar
  81. 81.
    Matsumoto T, Tanaka M, Ogata N, et al. Significance of urinary endotoxin concentration in patients with urinary tract infection. Urol Res. 1991;19:293–295.CrossRefPubMedGoogle Scholar
  82. 82.
    Boelke E, Jehle PM, Storck M, et al. Urinary endotoxin excretion and urinary tract infection following kidney transplantation. Transpl Int. 2001;14:307–310.CrossRefPubMedGoogle Scholar
  83. 83.
    Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–1593.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Sprinz H, Kundel DW, Dammin GJ, et al. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am J Pathol. 1961;39:681–695.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sedman PC, Macfie J, Sagar P, et al. The prevalence of gut translocation in humans. Gastroenterology. 1994;107:643–649.CrossRefPubMedGoogle Scholar
  86. 86.
    Heumann D, Roger T. Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta Int J Clin Chem. 2002;323:59–72.CrossRefGoogle Scholar
  87. 87.
    Zou B, Jiang W. Acyloxyacyl hydrolase promotes the resolution of lipopolysaccharide-induced acute lung injury. PLoS Pathog. 2017;13:e1006436.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Feulner JA, Lu M, Shelton JM, et al. Identification of acyloxyacyl hydrolase, a lipopolysaccharide-detoxifying enzyme, in the murine urinary tract. Infect Immun. 2004;72:3171–3178.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lei W, Ni H, Herington J, et al. Alkaline phosphatase protects lipopolysaccharide-induced early pregnancy defects in mice. PLoS One. 2015;10:e0123243.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Leelahavanichkul A, Panpetch W, Worasilchai N, et al. Evaluation of gastrointestinal leakage using serum (1 → 3)-beta-d-glucan in a Clostridium difficile murine model. FEMS Microbiol Lett. 2016;363:fnw204.  https://doi.org/10.1093/femsle/fnw204.CrossRefPubMedGoogle Scholar
  91. 91.
    Eggimann P, Pittet D. Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later. Intensive Care Med. 2014;40:1429–1448.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Noss I, Doekes G, Thorne PS, et al. Comparison of the potency of a variety of beta-glucans to induce cytokine production in human whole blood. Innate Immun. 2013;19:10–19.CrossRefPubMedGoogle Scholar
  93. 93.
    Ferwerda G, Meyer-Wentrup F, Kullberg BJ, et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10:2058–2066.CrossRefPubMedGoogle Scholar
  94. 94.
    Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38:500–506.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Bolland S, Yim YS, Tus K, et al. Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(-/-) mice. J Exp Med. 2002;195:1167–1174.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ondee T, Surawut S, Taratummarat S, et al. Fc gamma receptor IIB deficient mice: a lupus model with increased endotoxin tolerance-related sepsis susceptibility. Shock. 2017;47:743–752.CrossRefPubMedGoogle Scholar
  97. 97.
    Vogelpoel LT, Hansen IS, Rispens T, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kingeter LM, Lin X. C-type lectin receptor-induced NF-kappaB activation in innate immune and inflammatory responses. Cell Mol Immunol. 2012;9:105–112.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med. 2012;18:1401–1406.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Issara-Amphorn J, Surawut S, Worasilchai N, et al. The synergy of endotoxin and (1 → 3)-beta-D-glucan, from gut translocation, worsens sepsis severity in a lupus model of fc gamma receptor IIb-deficient mice. J Innate Immun. 2018;10:189–201.CrossRefPubMedGoogle Scholar
  101. 101.
    Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science (New York, NY). 2016;352:aaf1098.CrossRefGoogle Scholar
  102. 102.
    Bashir KM, Choi J-S. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int J Mol Sci. 2017;18:1906.CrossRefPubMedCentralGoogle Scholar
  103. 103.
    Strnad P, Tacke F, Koch A, et al. Liver—guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14:55–66.CrossRefPubMedGoogle Scholar
  104. 104.
    Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–1524.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–232.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Acharya C, Bajaj JS. Altered microbiome in patients with cirrhosis and complications. Clin Gastroenterol Hepatol. 2018;17:307–321.CrossRefPubMedGoogle Scholar
  107. 107.
    Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Investig. 2017;127:2829–2841.CrossRefPubMedGoogle Scholar
  108. 108.
    Bajaj JS, Thacker LR, Fagan A, et al. Gut microbial RNA and DNA analysis predicts hospitalizations in cirrhosis. JCI Insight. 2018;3:98019.  https://doi.org/10.1172/jci.insight.98019.CrossRefPubMedGoogle Scholar
  109. 109.
    Fukui H. Gut-liver axis in liver cirrhosis: how to manage leaky gut and endotoxemia. World J Hepatol. 2015;7:425–442.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Doi K. Role of kidney injury in sepsis. J Intensive Care. 2016;4:17.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    White LE, Hassoun HT, Bihorac A, et al. Acute kidney injury is surprisingly common and a powerful predictor of mortality in surgical sepsis. J Trauma Acute Care Surg. 2013;75:432–438.CrossRefPubMedGoogle Scholar
  112. 112.
    Hoste EA, Lameire NH, Vanholder RC, et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. 2003;14:1022–1030.CrossRefPubMedGoogle Scholar
  113. 113.
    Bagshaw SM, George C, Bellomo R. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12:R47.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35:2–11.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.CrossRefPubMedGoogle Scholar
  116. 116.
    Cohen G, Horl WH. Immune dysfunction in uremia—an update. Toxins (Basel). 2012;4:962–990.CrossRefGoogle Scholar
  117. 117.
    Le Bastard Q, Al-Ghalith GA, Gregoire M, et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther. 2018;47:332–345.CrossRefPubMedGoogle Scholar
  118. 118.
    Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–670.CrossRefPubMedGoogle Scholar
  119. 119.
    Ramezani A, Massy ZA, Meijers B, et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–498.CrossRefPubMedGoogle Scholar
  120. 120.
    Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–315.CrossRefPubMedGoogle Scholar
  121. 121.
    Cummings JH. Fermentation in the human large intestine: evidence and implications for health. Lancet (London, England). 1983;1:1206–1209.CrossRefGoogle Scholar
  122. 122.
    de Loor H, Meijers BK, Meyer TW, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A. 2009;1216:4684–4688.CrossRefPubMedGoogle Scholar
  123. 123.
    Adesso S, Popolo A, Bianco G, et al. The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PLoS ONE. 2013;8:e76778.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Wong J, Vilar E, Farrington K. Endotoxemia in end-stage kidney disease. Semin Dial. 2015;28:59–67.CrossRefPubMedGoogle Scholar
  125. 125.
    Grant CJ, Harrison LE, Hoad CL, et al. Patients with chronic kidney disease have abnormal upper gastro-intestinal tract digestive function: a study of uremic enteropathy. J Gastroenterol Hepatol. 2017;32:372–377.CrossRefPubMedGoogle Scholar
  126. 126.
    Noel S, Martina-Lingua MN, Bandapalle S, et al. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease. Nephron Clin Pract. 2014;127:139–143.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    McDonald D, Ackermann G, Khailova L, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1.  https://doi.org/10.1128/mSphere.00199-16.
  128. 128.
    Lobo LA, Benjamim CF, Oliveira AC. The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clin Transl Immunol. 2016;5:e90.CrossRefGoogle Scholar
  129. 129.
    Vincent JL, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care (London, England). 2010;14:207.CrossRefGoogle Scholar
  130. 130.
    Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006;55:1512–1520.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Paphitou NI, Ostrosky-Zeichner L, Rex JH. Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Med Mycol. 2005;43:235–243.CrossRefPubMedGoogle Scholar
  132. 132.
    León C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34:730–737.CrossRefPubMedGoogle Scholar
  133. 133.
    Ostrosky-Zeichner L, Sable C, Sobel J, et al. Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. Eur J Clin Microbiol Infect Dis. 2007;26:271–276.CrossRefPubMedGoogle Scholar
  134. 134.
    Xie G-H, Fang X-M, Fang Q, et al. Impact of invasive fungal infection on outcomes of severe sepsis: a multicenter matched cohort study in critically ill surgical patients. Crit Care. 2008;12:R5.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Pfaller MA, Messer SA, Moet GJ, et al. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents. 2011;38:65–69.CrossRefPubMedGoogle Scholar
  136. 136.
    Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–2029.CrossRefPubMedGoogle Scholar
  137. 137.
    Kuse E-R, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369:1519–1527.CrossRefPubMedGoogle Scholar
  138. 138.
    Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–2482.CrossRefPubMedGoogle Scholar
  139. 139.
    Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–893.CrossRefPubMedGoogle Scholar
  140. 140.
    Betts RF, Nucci M, Talwar D, et al. A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48:1676–1684.CrossRefPubMedGoogle Scholar
  141. 141.
    Neofytos D, Lu K, Hatfield-Seung A, et al. Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis. 2013;75:144–149.CrossRefPubMedGoogle Scholar
  142. 142.
    Marotta F, Barreto R, Kawakita S, et al. Preventive strategy for Candida gut translocation during ischemia–reperfusion injury supervening on protein–calorie malnutrition. Chin J Dig Dis. 2006;7:33–38.CrossRefPubMedGoogle Scholar
  143. 143.
    Allert S, Förster TM, Svensson C-M, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio. 2018;9:e00915–e00918.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Eggimann P, Francioli P, Bille J, et al. Fluconazole prophylaxis prevents intra-abdominal candidiasis in high-risk surgical patients. Crit Care Med. 1999;27:1066–1072.CrossRefPubMedGoogle Scholar
  145. 145.
    Pelz RK, Hendrix CW, Swoboda SM, et al. Double-blind placebo-controlled trial of fluconazole to prevent candidal infections in critically ill surgical patients. Ann Surg. 2001;233:542.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Sandven P, Qvist H, Skovlund E, et al. Significance of Candida recovered from intraoperative specimens in patients with intra-abdominal perforations. Crit Care Med. 2002;30:541–547.CrossRefPubMedGoogle Scholar
  147. 147.
    Garbino J, Lew DP, Romand J-A, et al. Prevention of severe Candida infections in nonneutropenic, high-risk, critically ill patients: a randomized, double-blind, placebo-controlled trial in patients treated by selective digestive decontamination. Intensive Care Med. 2002;28:1708–1717.CrossRefPubMedGoogle Scholar
  148. 148.
    Jacobs S, Evans DAP, Tariq M, et al. Fluconazole improves survival in septic shock: a randomized double-blind prospective study. Crit Care Med. 2003;31:1938–1946.CrossRefPubMedGoogle Scholar
  149. 149.
    Normand S, François B, Dardé M-L, et al. Oral nystatin prophylaxis of Candida spp. colonization in ventilated critically ill patients. Intensive Care Med. 2005;31:1508–1513.CrossRefPubMedGoogle Scholar
  150. 150.
    Schuster MG, Edwards JE, Sobel JD, et al. Empirical fluconazole versus placebo for intensive care unit patients: a randomized trial. Ann Intern Med. 2008;149:83–90.CrossRefPubMedGoogle Scholar
  151. 151.
    Giglio M, Caggiano G, Dalfino L, et al. Oral nystatin prophylaxis in surgical/trauma ICU patients: a randomised clinical trial. Crit Care. 2012;16:R57.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Ostrosky-Zeichner L, Shoham S, Vazquez J, et al. MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis. 2014;58:1219–1226.CrossRefPubMedGoogle Scholar
  153. 153.
    Knitsch W, Vincent J-L, Utzolino S, et al. A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis. 2015;61:1671–1678.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Timsit J-F, Azoulay E, Schwebel C, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, Candida colonization, and multiple organ failure: the EMPIRICUS randomized clinical trial. JAMA. 2016;316:1555–1564.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Panomwat Amornphimoltham
    • 1
  • Peter S. T. Yuen
    • 2
  • Robert A. Star
    • 2
  • Asada Leelahavanichkul
    • 1
    • 3
    Email author
  1. 1.Immunology Unit, Department of MicrobiologyChulalongkorn UniversityBangkokThailand
  2. 2.Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  3. 3.Center of Excellence in Immunology and Immune-mediated Diseases, Department of MicrobiologyChulalongkorn UniversityBangkokThailand

Personalised recommendations