Advertisement

Coexistence of Alterations of Gastrointestinal Function and Mechanical Allodynia in the Reserpine-Induced Animal Model of Fibromyalgia

  • Masayuki Uchida
  • Orie Kobayashi
  • Miku Yoshida
  • Machiko Miwa
  • Reina Miura
  • Hiroko Saito
  • Yukinori NagakuraEmail author
Original Article
  • 4 Downloads

Abstract

Background

Fibromyalgia (FM) is a disorder characterized by widespread chronic pain as core symptom and a broad range of comorbidities. Despite the prevalence of gastrointestinal (GI) comorbidities in patients with FM, GI functions have rarely been investigated in animal models of FM.

Aims

The purpose of the present study is to investigate the coexistence of alterations of GI function in the reserpine-induced myalgia (RIM) rat, a validated FM model associated with disruption of monoamine system.

Methods

Paw withdrawal threshold (von Frey hair test) was assessed as pain-associated indicator. Gastric emptying (13C breath test), small intestinal transit (charcoal meal test), and fecal water content were investigated as GI functions.

Results

The specific regimen of reserpine for the RIM rat, i.e., 1 mg/kg s.c., once daily for three consecutive days, caused a reduction of paw withdrawal threshold (i.e., mechanical allodynia) on days 3, 5, and 7 after the first injection. The 13CO2 excreted from the RIM rat was significantly increased on day 7. The RIM rat exhibited an acceleration of small intestinal transit on day 5. Fecal water content collected from the RIM rat was significantly increased on days 3 and 5. The amount of noradrenaline was significantly decreased in GI tissues on days 3, 5, and 7 in the RIM rat. Conclusions This study revealed that accelerated gastric emptying, accelerated small intestinal transit, and increase in fecal water content coexist with mechanical allodynia in the RIM rat, simulating the coexistence of chronic pain and alterations of GI function in patients with FM.

Keywords

Fibromyalgia Reserpine-induced myalgia rat Gastric emptying Intestinal transit Fecal water content Gastrointestinal monoamines 

Notes

Acknowledgments

The authors appreciate the funding from Education and Research Project of Aomori university.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311:1547–1555.CrossRefGoogle Scholar
  2. 2.
    Wolfe F, Clauw DJ, Fitzcharles MA, et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res (Hoboken). 2010;62:600–610.CrossRefGoogle Scholar
  3. 3.
    Queiroz LP. Worldwide epidemiology of fibromyalgia. Curr Pain Headache Rep. 2013;17:356.CrossRefGoogle Scholar
  4. 4.
    Wolfe F, Walitt BT, Katz RS, Häuser W. Social security work disability and its predictors in patients with fibromyalgia. Arthritis Care Res (Hoboken). 2014;66:1354–1363.CrossRefGoogle Scholar
  5. 5.
    Sanada K, Díez MA, Valero MS, et al. Effects of non-pharmacological interventions on inflammatory biomarker expression in patients with fibromyalgia: a systematic review. Arthritis Res Ther. 2015;17:272.CrossRefGoogle Scholar
  6. 6.
    Woolf CJ. What is this thing called pain? J Clin Invest. 2010;120:3742–3744.CrossRefGoogle Scholar
  7. 7.
    Costa ID, Gamundí A, Miranda JG, França LG, De Santana CN, Montoya P. Altered functional performance in patients with fibromyalgia. Front Hum Neurosci. 2017;11:14.CrossRefGoogle Scholar
  8. 8.
    Ablin JN, Häuser W. Fibromyalgia syndrome: novel therapeutic targets. Pain Manag. 2016;6:371–381.CrossRefGoogle Scholar
  9. 9.
    Lacasse A, Bourgault P, Choinière M. Fibromyalgia-related costs and loss of productivity: a substantial societal burden. BMC Musculoskelet Disord. 2016;17:168.CrossRefGoogle Scholar
  10. 10.
    Nagakura Y. Challenges in drug discovery for overcoming ‘dysfunctional pain’: an emerging category of chronic pain. Expert Opin Drug Discov. 2015;10:1043–1045.CrossRefGoogle Scholar
  11. 11.
    Schmidt-Wilcke T, Clauw DJ. Pharmacotherapy in fibromyalgia (FM)-implications for the underlying pathophysiology. Pharmacol Ther. 2010;127:283–294.CrossRefGoogle Scholar
  12. 12.
    Riedl A, Schmidtmann M, Stengel A, et al. Somatic comorbidities of irritable bowel syndrome: a systematic analysis. Psychosom Res. 2008;64:573–582.CrossRefGoogle Scholar
  13. 13.
    Triadafilopoulos G, Simms RW, Goldenberg DL. Bowel dysfunction in fibromyalgia syndrome. Dig Dis Sci. 1991;36:59–64.  https://doi.org/10.1007/BF01300088 CrossRefGoogle Scholar
  14. 14.
    Wallace DJ, Hallegua DS. Fibromyalgia: the gastrointestinal link. Curr Pain Headache Rep. 2004;8:364–368.CrossRefGoogle Scholar
  15. 15.
    Kurland JE, Coyle WJ, Winkler A, Zable E. Prevalence of irritable bowel syndrome and depression in fibromyalgia. Dig Dis Sci. 2006;51:454–460.  https://doi.org/10.1007/s10620-006-3154-7 CrossRefGoogle Scholar
  16. 16.
    Kim SE, Chang L. Overlap between functional GI disorders and other functional syndromes: what are the underlying mechanisms? Neurogastroenterol Motil. 2012;24:895–913.CrossRefGoogle Scholar
  17. 17.
    Slim M, Calandre EP, Rico-Villademoros F. An insight into the gastrointestinal component of fibromyalgia: clinical manifestations and potential underlying mechanisms. Rheumatol Int. 2015;35:433–444.CrossRefGoogle Scholar
  18. 18.
    Russell IJ, Vaeroy H, Javors M, Nyberg F. Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis Rheum. 1992;35:550–556.CrossRefGoogle Scholar
  19. 19.
    Wood PB, Glabus MF, Simpson R, Patterson JC 2nd. Changes in gray matter density in fibromyalgia: correlation with dopamine metabolism. J Pain. 2009;10:609–618.CrossRefGoogle Scholar
  20. 20.
    Ablin JN, Buskila D. Update on the genetics of the fibromyalgia syndrome. Best Pract Res Clin Rheumatol. 2015;29:20–28.CrossRefGoogle Scholar
  21. 21.
    Macian N, Pereira B, Shinjo C, Dubray C, Pickering G. Fibromyalgia, milnacipran and experimental pain modulation: study protocol for a double blind randomized controlled trial. Trials. 2015;16:134.CrossRefGoogle Scholar
  22. 22.
    Nagakura Y, Oe T, Aoki T, Matsuoka N. Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: a putative animal model of fibromyalgia. Pain. 2009;146:26–33.CrossRefGoogle Scholar
  23. 23.
    Arora V, Kuhad A, Tiwari V, Chopra K. Curcumin ameliorates reserpine-induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology. 2011;36:1570–1581.CrossRefGoogle Scholar
  24. 24.
    Blasco-Serra A, Escrihuela-Vidal F, González-Soler EM, et al. Depressive-like symptoms in a reserpine-induced model of fibromyalgia in rats. Physiol Behav. 2015;151:456–462.CrossRefGoogle Scholar
  25. 25.
    Hernandez-Leon A, Fernández-Guasti A, Martínez A, Pellicer F, González-Trujano ME. Sleep architecture is altered in the reserpine-induced fibromyalgia model in ovariectomized rats. Behav Brain Res. 2018.  https://doi.org/10.1016/j.bbr.2018.01.005.Google Scholar
  26. 26.
    Kiso T, Moriyama A, Furutani M, Matsuda R, Funatsu Y. Effects of pregabalin and duloxetine on neurotransmitters in the dorsal horn of the spinal cord in a rat model of fibromyalgia. Eur J Pharmacol. 2018;827:117–124.CrossRefGoogle Scholar
  27. 27.
    Taguchi T, Katanosaka K, Yasui M, et al. Peripheral and spinal mechanisms of nociception in a rat reserpine-induced pain model. Pain. 2015;156:415–427.CrossRefGoogle Scholar
  28. 28.
    Wells JA, Shibata S, Fujikawa A, Takahashi M, Saga T, Aoki I. Functional MRI of the reserpine-induced putative rat model of fibromyalgia reveals discriminatory patterns of functional augmentation to acute nociceptive stimuli. Sci Rep. 2017;7:38325.CrossRefGoogle Scholar
  29. 29.
    Zhang TT, Xue R, Zhu L, et al. Evaluation of the analgesic effects of ammoxetine, a novel potent serotonin and norepinephrine reuptake inhibitor. Acta Pharmacol Sin. 2016;37:1154–1165.CrossRefGoogle Scholar
  30. 30.
    Nishiyori M, Ueda H. Prolonged gabapentin analgesia in an experimental mouse model of fibromyalgia. Mol Pain. 2008;4:52.CrossRefGoogle Scholar
  31. 31.
    Quintero L, Moreno M, Avila C, Arcaya J, Maixner W, Suarez-Roca H. Long-lasting delayed hyperalgesia after subchronic swim stress. Pharmacol Biochem Behav. 2000;67:449–458.CrossRefGoogle Scholar
  32. 32.
    Sluka KA, Kalra A, Moore SA. Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve. 2001;24:37–46.CrossRefGoogle Scholar
  33. 33.
    Ogino S, Nagakura Y, Tsukamoto M, et al. Systemic administration of 5-HT(2C) receptor agonists attenuates muscular hyperalgesia in reserpine-induced myalgia model. Pharmacol Biochem Behav. 2013;108:8–15.CrossRefGoogle Scholar
  34. 34.
    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.CrossRefGoogle Scholar
  35. 35.
    Uchida M, Endo N, Shimizu K. Simple and noninvasive breath test using 13C-acetic acid to evaluate gastric emptying in conscious rats and its validation by metoclopramide. J Pharmacol Sci. 2005;98:388–395.CrossRefGoogle Scholar
  36. 36.
    Mittelstadt SW, Hemenway CL, Spruell RD. Effects of fasting on evaluation of gastrointestinal transit with charcoal meal. Pharmacol Toxicol Methods. 2005;52:154–158.CrossRefGoogle Scholar
  37. 37.
    Saito H, Murai S, Abe E, Masuda Y, Itoh T. Rapid and simultaneous assay of monoamine neurotransmitters and their metabolites in discrete brain areas of mice by HPLC with coulometric detection. Pharmacol Biochem Behav. 1992;42:351–356.CrossRefGoogle Scholar
  38. 38.
    Braden B, Adams S, Duan LP, et al. The [13C]acetate breath test accurately reflects gastric emptying of liquids in both liquid and semisolid test meals. Gastroenterology. 1995;108:1048–1055.CrossRefGoogle Scholar
  39. 39.
    Schoonjans R, Van Vlem B, Van Heddeghem N, et al. The 13C-octanoic acid breath test: validation of a new noninvasive method of measuring gastric emptying in rats. Neurogastroenterol Motil. 2002;14:287–293.CrossRefGoogle Scholar
  40. 40.
    Ohta M, Kanai S, Sato Y, et al. Mechanism of delayed gastric emptying in naturally occurring CCK-A receptor gene knockout (OLETF) rats. Jpn J Physiol. 2000;50:443–448.CrossRefGoogle Scholar
  41. 41.
    Herman MA, Niedringhaus M, Alayan A, Verbalis JG, Sahibzada N, Gillis RA. Characterization of noradrenergic transmission at the dorsal motor nucleus of the vagus involved in reflex control of fundus tone. Am J Physiol Regul Integr Comp Physiol. 2008;294:R720–R729.CrossRefGoogle Scholar
  42. 42.
    Horinouchi T, Tanaka Y, Koike K. Evidence for the primary role for 4-aminopyridine-sensitive K(v) channels in beta(3)-adrenoceptor-mediated, cyclic AMP-independent relaxations of guinea-pig gastrointestinal smooth muscles. Naunyn Schmiedebergs Arch Pharmacol. 2003;367:193–203.CrossRefGoogle Scholar
  43. 43.
    Kindt S, Tack J. Impaired gastric accommodation and its role in dyspepsia. Gut. 2006;55:1685–1691.CrossRefGoogle Scholar
  44. 44.
    Enck P, Azpiroz F, Boeckxstaens G, et al. Functional dyspepsia. Nat Rev Dis Primers. 2017;3:17081.CrossRefGoogle Scholar
  45. 45.
    Chang L. The association of functional gastrointestinal disorders and fibromyalgia. Eur J Surg Suppl. 1998;582:32–36.CrossRefGoogle Scholar
  46. 46.
    Feinle-Bisset C, Vozzo R, Horowitz M, Talley NJ. Diet, food intake, and disturbed physiology in the pathogenesis of symptoms in functional dyspepsia. Am J Gastroenterol. 2004;99:170–181.CrossRefGoogle Scholar
  47. 47.
    Bharucha AE, Manduca A, Lake DS, et al. Gastric motor disturbances in patients with idiopathic rapid gastric emptying. Neurogastroenterol Motil. 2011;23:617-e252.CrossRefGoogle Scholar
  48. 48.
    Delgado-Aros S, Camilleri M, Cremonini F, Ferber I, Stephens D, Burton DD. Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. Gastroenterology. 2004;127:1685–1694.CrossRefGoogle Scholar
  49. 49.
    Lunding JA, Tefera S, Gilja OH, et al. Rapid initial gastric emptying and hypersensitivity to gastric filling in functional dyspepsia: effects of duodenal lipids. Scand J Gastroenterol. 2006;41:1028–1036.CrossRefGoogle Scholar
  50. 50.
    Bredenoord AJ, Chial HJ, Camilleri M, Mullan BP, Murray JA. Gastric accommodation and emptying in evaluation of patients with upper gastrointestinal symptoms. Clin Gastroenterol Hepatol. 2004;1:264–272.CrossRefGoogle Scholar
  51. 51.
    Karamanolis G, Caenepeel P, Arts J, Tack J. Association of the predominant symptom with clinical characteristics and pathophysiological mechanisms in functional dyspepsia. Gastroenterology. 2006;130:296–303.CrossRefGoogle Scholar
  52. 52.
    Moragas G, Azpiroz F, Pavia J, Malagelada JR. Relations among intragastric pressure, postcibal perception, and gastric emptying. Am J Physiol.. 1993;264:G1112–G1117.Google Scholar
  53. 53.
    Ropert A, des Varannes SB, Bizais Y, Rozé C, Galmiche JP. Simultaneous assessment of liquid emptying and proximal gastric tone in humans. Gastroenterology. 1993;105:667–674.CrossRefGoogle Scholar
  54. 54.
    Strunz UT, Grossman MI. Effect of intragastric pressure on gastric emptying and secretion. Am J Physiol. 1978;235:E552–E555.Google Scholar
  55. 55.
    Fülöp K, Zádori Z, Rónai AZ, Gyires K. Characterisation of alpha2-adrenoceptor subtypes involved in gastric emptying, gastric motility and gastric mucosal defense. Eur J Pharmacol. 2005;528:150–157.CrossRefGoogle Scholar
  56. 56.
    Yamano M, Kamato T, Nagakura Y, Miyata K. Effects of gastroprokinetic agents on gastroparesis in streptozotocin-induced diabetic rats. Naunyn Schmiedebergs Arch Pharmacol. 1997;356:145–150.CrossRefGoogle Scholar
  57. 57.
    Seto K, Sasaki T, Katsunuma K, Kobayashi N, Tanaka K, Tack J. Acotiamide hydrochloride (Z-338), a novel prokinetic agent, restores delayed gastric emptying and feeding inhibition induced by restraint stress in rats. Neurogastroenterol Motil. 2008;20:1051–1059.CrossRefGoogle Scholar
  58. 58.
    Stewart JJ, Jobe PC. Effects of reserpine on monoamines and intestinal transit in the rat. J Pharmacol Exp Ther. 1981;217:357–362.Google Scholar
  59. 59.
    Ide S, Yamamoto R, Takeda H, Minami M. Bidirectional brain-gut interactions: involvement of noradrenergic transmission within the ventral part of the bed nucleus of the stria terminalis. Neuropsychopharmacol Rep. 2018;38:37–43.CrossRefGoogle Scholar
  60. 60.
    Lin HC, Neevel C, Chen PS, Suh G, Chen JH. Slowing of intestinal transit by fat or peptide YY depends on beta-adrenergic pathway. Am J Physiol Gastrointest Liver Physiol. 2003;285:G1310–G1316.CrossRefGoogle Scholar
  61. 61.
    Mawe GM, Hoffman JM. Serotonin signaling in the gastrointestinal tract: functions, dysfunctions, and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473–486.CrossRefGoogle Scholar
  62. 62.
    Zhang X, Li Y, Zhang X, Duan Z, Zhu J. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system. Physiol Res. 2015;64:103–110.Google Scholar
  63. 63.
    Brady RC, Karnaky KJ Jr, Dedman JR. Colonic glycoprotein secretion and calmodulin-acceptor proteins in the reserpine-treated rat. Am J Physiol. 1985;248:G54–G60.Google Scholar
  64. 64.
    Furlan R, Colombo S, Perego F, et al. Abnormalities of cardiovascular neural control and reduced orthostatic tolerance in patients with primary fibromyalgia. J Rheumatol. 2005;32:1787–1793.Google Scholar
  65. 65.
    Giske L, Vøllestad NK, Mengshoel AM, Jensen J, Knardahl S, Røe C. Attenuated adrenergic responses to exercise in women with fibromyalgia–a controlled study. Eur J Pain. 2008;12:351–360.CrossRefGoogle Scholar
  66. 66.
    Light KC, Bragdon EE, Grewen KM, Brownley KA, Girdler SS, Maixner W. Adrenergic dysregulation and pain with and without acute beta-blockade in women with fibromyalgia and temporomandibular disorder. J Pain. 2009;10:542–552.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Food Science and Technology Research Laboratories, R&D DivisionMeiji Co., Ltd.TokyoJapan
  2. 2.Faculty of Pharmaceutical SciencesAomori UniversityAomoriJapan
  3. 3.Center for Brain and Health SciencesAomori UniversityAomori-cityJapan
  4. 4.Department of Pharmacology, School of PharmacyInternational University of Health and WelfareOhtawara-cityJapan

Personalised recommendations