Advertisement

Effect of Long-Term Mesalamine Therapy on Cancer-Associated Gene Expression in Colonic Mucosa of Patients with Ulcerative Colitis

  • Manisha Bajpai
  • Darren N. Seril
  • James Van Gurp
  • Xin Geng
  • Janet Alvarez
  • Carlos D. Minacapelli
  • Steve Gorin
  • Koushik K. Das
  • Elizabeth Poplin
  • Jerry Cheng
  • Peter S. Amenta
  • Kiron M. Das
Original Article

Abstract

Background

The role of 5-aminosalicylic acid (5-ASA or mesalamine) in the prevention of colorectal cancer in ulcerative colitis (UC) patients was reported, but the effect on molecular targets in UC colon mucosa is unknown.

Aim

This observational study evaluates gene expression levels of 5-ASA targets using serial colon biopsy specimens from UC patients undergoing long-term 5-ASA therapy.

Methods

Transcript levels were compared between colonoscopic biopsy specimens collected from 62 patients at initial and final follow-up colonoscopy at 2–6 years. All patients had mild-to-moderate UC and were undergoing long-term 5-ASA maintenance. Stepwise multiple linear regression analyses were performed to correlate changes in transcript levels with therapeutic response (Mayo clinical score endoscopy and DAI and/or Nancy histopathology score) and nonclinical variables.

Results

The transcript levels of colorectal carcinogenesis-associated known 5-ASA target genes were significantly reduced after prolonged 5-ASA therapy (P < 0.005–0.03). Multiple linear regression models predicted significant association between transcript levels of Ki-67, NF-kB (p65), PPARγ, COX-2 and IL-8, CDC25A, and CXCL10 with duration of drug (5-ASA) exposure (P ≤ 0.05). Ki-67, NF-kB (p65), and CXCL10 transcripts were also correlated with reduced endoscopy sub-score (P ≤ 0.05). COX-2, IL-8, CDC25A, and TNF transcripts strongly correlated with DAI sub-scores (P ≤ 0.05). Only COX-2 and IL-8 transcript levels correlated (P ≤ 0.05) with Nancy histological score.

Conclusion

This study provides molecular evidence of changes in carcinogenesis-related targets/pathways in colon tissue during long-term 5-ASA maintenance therapy that may contribute to the observed chemopreventive effects of 5-ASA in UC patients.

Keywords

5-aminosalicylic acid (5-ASA) Chemoprevention Ulcerative colitis (UC) 

Notes

Author’s contribution

MB participated in study design, data acquisition, data analysis, writing the first draft, and coordinating the subsequent revisions of the manuscript with coauthors. DS, KMD, and EP participated in patient recruitment; MB, DS, JG, XG, JA, CM, KD, and PA assisted in data collection from experiments and patient charts; SG and JC assisted in statistical analysis; MB, DS, and KMD contributed to critical review of the draft, and all authors reviewed and approved the final manuscript.

Funding

The clinical component of this study was supported in part by an Investigator-Initiated Research Grant to KD by Proctor and Gamble Pharmaceuticals. The in vitro studies molecular assays and statistical analyses were supported by a Regional Grant-In-Aid by Proctor and Gamble Pharmaceuticals to MB.

Compliance with ethical standards

Conflict of interest

KD, XG and MB received funding for this study from Proctor and Gamble. Other authors have no conflicts to disclose.

Supplementary material

10620_2018_5378_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1575 kb)

References

  1. 1.
    Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–535.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990;323:1228–1233.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    van Staa TP, Card T, Logan RF, Leufkens HG. 5-Aminosalicylate use and colorectal cancer risk in inflammatory bowel disease: a large epidemiological study. Gut. 2005;54:1573–1578.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Velayos FS, Loftus EV Jr, Jess T, et al. Predictive and protective factors associated with colorectal cancer in ulcerative colitis: a case-control study. Gastroenterology. 2006;130:1941–1949.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rubin DT, Huo D, Kinnucan JA, et al. Inflammation is an independent risk factor for colonic neoplasia in patients with ulcerative colitis: a case–control study. Clin Gastroenterol Hepatol. 2013;11:1601–1608 e1601–1604.CrossRefGoogle Scholar
  6. 6.
    Bus PJ, Nagtegaal ID, Verspaget HW, et al. Mesalazine-induced apoptosis of colorectal cancer: on the verge of a new chemopreventive era? Aliment Pharmacol Ther. 1999;13:1397–1402.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Reinacher-Schick A, Seidensticker F, Petrasch S, et al. Mesalazine changes apoptosis and proliferation in normal mucosa of patients with sporadic polyps of the large bowel. Endoscopy. 2000;32:245–254.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Eaden J, Abrams K, Ekbom A, Jackson E, Mayberry J. Colorectal cancer prevention in ulcerative colitis: a case–control study. Aliment Pharmacol Ther. 2000;14:145–153.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brown WA, Farmer KC, Skinner SA, Malcontenti-Wilson C, Misajon A, O’Brien PE. 5-Aminosalicyclic acid and olsalazine inhibit tumor growth in a rodent model of colorectal cancer. Dig Dis Sci. 2000;45:1578–1584.  https://doi.org/10.1023/A:1005517112039.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ikeda I, Tomimoto A, Wada K, et al. 5-aminosalicylic acid given in the remission stage of colitis suppresses colitis-associated cancer in a mouse colitis model. Clin Cancer Res. 2007;13:6527–6531.CrossRefPubMedGoogle Scholar
  11. 11.
    Reinacher-Schick A, Schoeneck A, Graeven U, Schwarte-Waldhoff I, Schmiegel W. Mesalazine causes a mitotic arrest and induces caspase-dependent apoptosis in colon carcinoma cells. Carcinogenesis. 2003;24:443–451.CrossRefPubMedGoogle Scholar
  12. 12.
    Koelink PJ, Mieremet-Ooms MA, Corver WE, et al. 5-Aminosalicylic acid interferes in the cell cycle of colorectal cancer cells and induces cell death modes. Inflamm Bowel Dis. 2010;16:379–389.CrossRefPubMedGoogle Scholar
  13. 13.
    Schwab M, Reynders V, Loitsch S, et al. PPARgamma is involved in mesalazine-mediated induction of apoptosis and inhibition of cell growth in colon cancer cells. Carcinogenesis. 2008;29:1407–1414.CrossRefPubMedGoogle Scholar
  14. 14.
    Stolfi C, Fina D, Caruso R, et al. Mesalazine negatively regulates CDC25A protein expression and promotes accumulation of colon cancer cells in S phase. Carcinogenesis. 2008;29:1258–1266.CrossRefPubMedGoogle Scholar
  15. 15.
    Stolfi C, Fina D, Caruso R, et al. Cyclooxygenase-2-dependent and -independent inhibition of proliferation of colon cancer cells by 5-aminosalicylic acid. Biochem Pharmacol. 2008;75:668–676.CrossRefGoogle Scholar
  16. 16.
    Rousseaux C, Lefebvre B, Dubuquoy L, et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med. 2005;201:1205–1215.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dubuquoy L, Rousseaux C, Thuru X, et al. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut. 2006;55:1341–1349.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Egan LJ, Mays DC, Huntoon CJ, et al. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J Biol Chem. 1999;274:26448–26453.CrossRefGoogle Scholar
  19. 19.
    Bantel H, Berg C, Vieth M, Stolte M, Kruis W, Schulze-Osthoff K. Mesalazine inhibits activation of transcription factor NF-kappaB in inflamed mucosa of patients with ulcerative colitis. Am J Gastroenterol. 2000;95:3452–3457.Google Scholar
  20. 20.
    Bos CL, Diks SH, Hardwick JC, Walburg KV, Peppelenbosch MP, Richel DJ. Protein phosphatase 2A is required for mesalazine-dependent inhibition of Wnt/beta-catenin pathway activity. Carcinogenesis. 2006;27:2371–2382.CrossRefPubMedGoogle Scholar
  21. 21.
    Brown JB, Lee G, Managlia E, et al. Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology. 2010;138:595–605, 605 e591–593.CrossRefGoogle Scholar
  22. 22.
    Parenti S, Ferrarini F, Zini R, et al. Mesalazine inhibits the beta-catenin signalling pathway acting through the upregulation of mu-protocadherin gene in colo-rectal cancer cells. Aliment Pharmacol Ther. 2010;31:108–119.CrossRefPubMedGoogle Scholar
  23. 23.
    Gupta RA, Dubois RN. Controversy: PPARgamma as a target for treatment of colorectal cancer. Am J Physiol Gastrointest Liver Physiol. 2002;283:G266–G269.CrossRefPubMedGoogle Scholar
  24. 24.
    Clapper ML, Gary MA, Coudry RA, et al. 5-Aminosalicylic acid inhibits colitis-associated colorectal dysplasias in the mouse model of azoxymethane/dextran sulfate sodium-induced colitis. Inflamm Bowel Dis. 2008;14:1341–1347.CrossRefPubMedGoogle Scholar
  25. 25.
    Qiu X, Ma J, Wang K, Zhang H. Chemopreventive effects of 5-aminosalicylic acid on inflammatory bowel disease-associated colorectal cancer and dysplasia: a systematic review with meta-analysis. Oncotarget. 2017;8:1031–1045.PubMedGoogle Scholar
  26. 26.
    Lin JL, Geng X, Bhattacharya SD, et al. Isolation and sequencing of a novel tropomyosin isoform preferentially associated with colon cancer. Gastroenterology. 2002;123:152–162.CrossRefPubMedGoogle Scholar
  27. 27.
    Das KK, Bajpai M, Kong Y, Liu J, Geng X, Das KM. Mesalamine suppresses the expression of TC22, a novel tropomyosin isoform associated with colonic neoplasia. Mol Pharmacol. 2009;76:183–191.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lauritsen K, Hansen J, Ryde M, Rask-Madsen J. Colonic azodisalicylate metabolism determined by in vivo dialysis in healthy volunteers and patients with ulcerative colitis. Gastroenterology. 1984;86:1496–1500.PubMedGoogle Scholar
  29. 29.
    Dahl JU, Gray MJ, Bazopoulou D, et al. The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nat Microbiol. 2017;2:16267.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–2476.CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Marchal-Bressenot A, Salleron J, Boulagnon-Rombi C, et al. Development and validation of the Nancy histological index for UC. Gut. 2017;66:43–49.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li W, Nyholt DR. Marker selection by Akaike information criterion and Bayesian information criterion. Genet Epidemiol. 2001;21:S272–S277.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4:136.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dou X, Xiao J, Jin Z, Zheng P. Peroxisome proliferator-activated receptor-gamma is downregulated in ulcerative colitis and is involved in experimental colitis-associated neoplasia. Oncol Lett. 2015;10:1259–1266.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ancha HR, Kurella RR, McKimmey CC, Lightfoot S, Harty RF. Effects of N-acetylcysteine plus mesalamine on prostaglandin synthesis and nitric oxide generation in TNBS-induced colitis in rats. Dig Dis Sci. 2009;54:758–766.  https://doi.org/10.1007/s10620-008-0438-0.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Subramanian S, Rhodes JM, Hart CA, et al. Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflamm Bowel Dis. 2008;14:162–175.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lyakhovich A, Gasche C. Systematic review: molecular chemoprevention of colorectal malignancy by mesalazine. Aliment Pharmacol Ther. 2010;31:202–209.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Inwald EC, Klinkhammer-Schalke M, Hofstadter F, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139:539–552.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sillars-Hardebol AH, Carvalho B, Belien JA, et al. BCL2L1 has a functional role in colorectal cancer and its protein expression is associated with chromosome 20q gain. J Pathol. 2012;226:442–450.CrossRefGoogle Scholar
  41. 41.
    Ling Y, Wang J, Wang L, Hou J, Qian P, Xiang-dong W. Roles of CEACAM1 in cell communication and signaling of lung cancer and other diseases. Cancer Metastasis Rev. 2015;34:347–357.CrossRefGoogle Scholar
  42. 42.
    Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436–440.CrossRefGoogle Scholar
  43. 43.
    Yang WL, Frucht H. Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis. 2001;22:1379–1383.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pedersen G, Brynskov J. Topical rosiglitazone treatment improves ulcerative colitis by restoring peroxisome proliferator-activated receptor-gamma activity. Am J Gastroenterol. 2010;105:1595–1603.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Buecher B, Bouancheau D, Broquet A, et al. Growth inhibitory effect of celecoxib and rofecoxib on human colorectal carcinoma cell lines. Anticancer Res. 2005;25:225–233.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Burton JD, Castillo ME, Goldenberg DM, Blumenthal RD. Peroxisome proliferator-activated receptor-gamma antagonists exhibit potent antiproliferative effects versus many hematopoietic and epithelial cancer cell lines. Anticancer Drugs. 2007;18:525–534.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Huo J, Xu S, Guo K, Zeng Q, Lam KP. Genetic deletion of faim reveals its role in modulating c-FLIP expression during CD95-mediated apoptosis of lymphocytes and hepatocytes. Cell Death Differ. 2009;16:1062–1070.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA. 1997;94:3336–3340.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998;115:297–306.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sheng H, Shao J, Kirkland SC, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Investig. 1997;99:2254–2259.CrossRefPubMedGoogle Scholar
  51. 51.
    Stolfi C, Pallone F, Monteleone G. Colorectal cancer chemoprevention by mesalazine and its derivatives. J Biomed Biotechnol. 2012;2012:980458.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Manisha Bajpai
    • 1
    • 2
  • Darren N. Seril
    • 1
  • James Van Gurp
    • 3
  • Xin Geng
    • 1
  • Janet Alvarez
    • 1
  • Carlos D. Minacapelli
    • 1
  • Steve Gorin
    • 4
  • Koushik K. Das
    • 1
  • Elizabeth Poplin
    • 2
  • Jerry Cheng
    • 4
  • Peter S. Amenta
    • 3
  • Kiron M. Das
    • 1
    • 2
  1. 1.Division of Gastroenterology, Department of MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA
  2. 2.Rutgers Cancer Institute of New JerseyRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA
  3. 3.Department of Pathology and Laboratory MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA
  4. 4.Cardiovascular InstituteRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations