Advertisement

Homoectoine Protects Against Colitis by Preventing a Claudin Switch in Epithelial Tight Junctions

  • Karla F. Castro-Ochoa
  • Hilda Vargas-Robles
  • Sandra Chánez-Paredes
  • Alfonso Felipe-López
  • Rodolfo I. Cabrera-Silva
  • Mineko Shibayama
  • Abigail Betanzos
  • Porfirio Nava
  • Erwin A. Galinski
  • Michael Schnoor
Original Article

Abstract

Background

Inflammatory bowel diseases (IBD) are multifactorial disorders affecting millions of people worldwide with alarmingly increasing incidences every year. Dysfunction of the intestinal epithelial barrier is associated with IBD pathogenesis, and therapies include anti-inflammatory drugs that enhance intestinal barrier function. However, these drugs often have adverse side effects thus warranting the search for alternatives. Compatible solutes such as bacterial ectoines stabilize cell membranes and proteins.

Aim

To unravel whether ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) and homoectoine (4,5,6,7-tetrahydro-2-methyl-1H-(1,3)-diazepine-4-carboxylic acid), a synthetic derivative of ectoine, have beneficial effects during dextran sulfate sodium (DSS)-induced colitis in mice.

Methods/Results

We found that the disease activity index was significantly reduced by both ectoines. DSS-induced edema formation, epithelial permeability, leukocyte recruitment and tissue damage were reduced by ectoine and homoectoine, with the latter having stronger effects. Interestingly, the claudin switch usually observed during colitis (decreased expression of claudin-1 and increased expression of the leaky claudin-2) was completely prevented by homoectoine, whereas ectoine only reduced claudin-2 expression. Concomitantly, only homoectoine ameliorated the drop in transepithelial electrical resistance induced by IFN-γ and TNF-α in Caco-2 cells. Both ectoines inhibited loss of ZO-1 and occludin and prevented IFN-γ/TNF-α-induced increased paracellular flux of 4 kDa FITC-dextran in vitro. Moreover, both ectoines reduced expression of pro-inflammatory cytokines and oxidative stress during colitis.

Conclusion

While both ectoine and homoectoine have protective effects on the epithelial barrier during inflammation, only homoectoine completely prevented the inflammatory claudin switch in tight junctions. Thus, homoectoine may serve as diet supplement in IBD patients to reach or extend remission.

Keywords

Ectoine Intestinal permeability Tight junction Pro-inflammatory cytokines Dextran sulfate sodium 

Abbreviations

AJ

Adherens junction

APJ

Apical junction complex

CD

Crohn’s disease

DAI

Disease activity index

DSS

Dextran sulfate sodium

IBD

Inflammatory bowel diseases

IFN-γ

Interferon-γ

IL

Interleukin

KO

Knock-out

MPO

Myeloperoxidase

ROS

Reactive oxygen species

TEER

Transepithelial electrical resistance

TJ

Tight junction

TNBS

2,4,6-Trinitrobenzenesulfonic acid

TNF-α

Tumor necrosis factor alpha

UC

Ulcerative colitis

ZO

Zonula occludens

Notes

Acknowledgment

We thank Angélica Silva Olivares for expert technical assistance.

Funding

This work was supported by grants of the Mexican Council for Science and Technology (CONACyT, 233395 and 207268 to MS).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20:91–99.CrossRefGoogle Scholar
  2. 2.
    Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–2078.CrossRefGoogle Scholar
  3. 3.
    Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol. 2006;169:1901–1909.CrossRefGoogle Scholar
  4. 4.
    Citalan-Madrid AF, Vargas-Robles H, Garcia-Ponce A, et al. Cortactin deficiency causes increased RhoA/ROCK1-dependent actomyosin contractility, intestinal epithelial barrier dysfunction, and disproportionately severe DSS-induced colitis. Mucosal Immunol. 2017;10:1237–1247.CrossRefGoogle Scholar
  5. 5.
    Triantafillidis JK, Merikas E, Georgopoulos F. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther. 2011;5:185–210.CrossRefGoogle Scholar
  6. 6.
    Troncone E, Monteleone G. The safety of non-biological treatments in Ulcerative Colitis. Expert Opin Drug Saf. 2017;16:779–789.PubMedGoogle Scholar
  7. 7.
    Galinski EA, Pfeiffer HP, Truper HG. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem. 1985;149:135–139.CrossRefGoogle Scholar
  8. 8.
    Pastor JM, Salvador M, Argandona M, et al. Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv. 2010;28:782–801.CrossRefGoogle Scholar
  9. 9.
    Smiatek J, Harishchandra RK, Rubner O, Galla HJ, Heuer A. Properties of compatible solutes in aqueous solution. Biophys Chem. 2012;160:62–68.CrossRefGoogle Scholar
  10. 10.
    Buenger J, Driller H. Ectoin: an effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol Physiol 2004;17:232–237.CrossRefGoogle Scholar
  11. 11.
    Sydlik U, Gallitz I, Albrecht C, Abel J, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Am J Respir Crit Care Med. 2009;180:29–35.CrossRefGoogle Scholar
  12. 12.
    Abdel-Aziz H, Wadie W, Scherner O, Efferth T, Khayyal MT. Bacteria-derived compatible solutes ectoine and 5alpha-hydroxyectoine act as intestinal barrier stabilizers to ameliorate experimental inflammatory bowel disease. J Nat Prod. 2015;78:1309–1315.CrossRefGoogle Scholar
  13. 13.
    Schnoor M, Voss P, Cullen P, et al. Characterization of the synthetic compatible solute homoectoine as a potent PCR enhancer. Biochem Biophys Res Commun. 2004;322:867–872.CrossRefGoogle Scholar
  14. 14.
    Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng. 1998;59:128.CrossRefGoogle Scholar
  15. 15.
    Koichi M, Mitsuhiko M, Tatsuo N, Yoshio S. Production of tetrahydropyrimidine derivatives. Japanese Patent Application JPH3031265A; 1991.Google Scholar
  16. 16.
    Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine. 2013;20:585–591.CrossRefGoogle Scholar
  17. 17.
    Mennigen R, Nolte K, Rijcken E, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1140–1149.CrossRefGoogle Scholar
  18. 18.
    Mendoza MG, Castillo-Henkel C, Medina-Santillan R, et al. Kidney damage after renal ablation is worsened in endothelial nitric oxide synthase -/- mice and improved by combined administration of l-arginine and antioxidants. Nephrol (Carlton). 2008;13:218–227.CrossRefGoogle Scholar
  19. 19.
    Viennois E, Chen F, Laroui H, Baker MT, Merlin D. Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify. RNA BMC Res Notes. 2013;6:360.CrossRefGoogle Scholar
  20. 20.
    Sydlik U, Peuschel H, Paunel-Gorgulu A, et al. Recovery of neutrophil apoptosis by ectoine: a new strategy against lung inflammation. Eur Respir J. 2013;41:433–442.CrossRefGoogle Scholar
  21. 21.
    Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol. 2008;26:326–333.CrossRefGoogle Scholar
  22. 22.
    Gersemann M, Becker S, Kubler I, et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation. 2009;77:84–94.CrossRefGoogle Scholar
  23. 23.
    Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012;590:1035–1044.CrossRefGoogle Scholar
  24. 24.
    Onyiah JC, Colgan SP. Cytokine responses and epithelial function in the intestinal mucosa. Cell Mol Life Sci. 2016;73:4203–4212.CrossRefGoogle Scholar
  25. 25.
    Mitsuyama K, Tomiyasu N, Takaki K, et al. Interleukin-10 in the pathophysiology of inflammatory bowel disease: increased serum concentrations during the recovery phase. Med Inflamm. 2006;2006:26875.CrossRefGoogle Scholar
  26. 26.
    Van der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131:117–129.CrossRefGoogle Scholar
  27. 27.
    Tytgat KM, van der Wal JW, Einerhand AW, Buller HA, Dekker J. Quantitative analysis of MUC2 synthesis in ulcerative colitis. Biochem Biophys Res Commun. 1996;224:397–405.CrossRefGoogle Scholar
  28. 28.
    Van Klinken BJ, Van der Wal JW, Einerhand AW, Buller HA, Dekker J. Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut 1999;44:387–393.CrossRefGoogle Scholar
  29. 29.
    Parkos CA. Neutrophil-epithelial interactions: a double-edged sword. Am J Pathol. 2016;186:1404–1416.CrossRefGoogle Scholar
  30. 30.
    Perse M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012;2012:718617.CrossRefGoogle Scholar
  31. 31.
    Salim SY, Soderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:362–381.CrossRefGoogle Scholar
  32. 32.
    Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Farkkila M, Kontula K. Family and twin studies in inflammatory bowel disease. World J Gastroenterol. 2006;12:3668–3672.CrossRefGoogle Scholar
  33. 33.
    Naydenov NG, Feygin A, Wang D, et al. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis. Sci Rep. 2016;6:24161.CrossRefGoogle Scholar
  34. 34.
    Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J. 2005;19:923–933.CrossRefGoogle Scholar
  35. 35.
    Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2:361–367.CrossRefGoogle Scholar
  36. 36.
    Nava P, Kamekura R, Nusrat A. Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis. Tissue Barriers. 2013;1:e24783.CrossRefGoogle Scholar
  37. 37.
    Van Itallie CM, Fanning AS, Bridges A, Anderson JM. ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell. 2009;20:3930–3940.CrossRefGoogle Scholar
  38. 38.
    Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions. Trends Cell Biol. 2010;20:142–149.CrossRefGoogle Scholar
  39. 39.
    Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140:12–19.CrossRefGoogle Scholar
  40. 40.
    Iraha A, Chinen H, Hokama A, et al. Fucoidan enhances intestinal barrier function by upregulating the expression of claudin-1. World J Gastroenterol. 2013;19:5500–5507.CrossRefGoogle Scholar
  41. 41.
    Amasheh S, Meiri N, Gitter AH, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115:4969–4976.CrossRefGoogle Scholar
  42. 42.
    Ahmad R, Chaturvedi R, Olivares-Villagomez D, et al. Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis. Mucosal Immunol. 2014;7:1340–1353.CrossRefGoogle Scholar
  43. 43.
    Yoseph BP, Klingensmith NJ, Liang Z, et al. Mechanisms of intestinal barrier dysfunction in sepsis. Shock. 2016;46:52–59.CrossRefGoogle Scholar
  44. 44.
    Damiani CR, Benetton CA, Stoffel C, et al. Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol. 2007;22:1846–1851.CrossRefGoogle Scholar
  45. 45.
    Werkhauser N, Bilstein A, Sonnemann U. Treatment of allergic rhinitis with ectoine containing nasal spray and eye drops in comparison with azelastine containing nasal spray and eye drops or with cromoglycic acid containing nasal spray. J Allergy (Cairo). 2014;2014:176597.PubMedCentralGoogle Scholar
  46. 46.
    Marini A, Reinelt K, Krutmann J, Bilstein A. Ectoine-containing cream in the treatment of mild to moderate atopic dermatitis: a randomised, comparator-controlled, intra-individual double-blind, multi-center trial. Skin Pharmacol Physiol. 2014;27:57–65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Karla F. Castro-Ochoa
    • 1
  • Hilda Vargas-Robles
    • 1
  • Sandra Chánez-Paredes
    • 1
  • Alfonso Felipe-López
    • 1
    • 6
  • Rodolfo I. Cabrera-Silva
    • 1
  • Mineko Shibayama
    • 2
  • Abigail Betanzos
    • 2
    • 3
  • Porfirio Nava
    • 4
  • Erwin A. Galinski
    • 5
  • Michael Schnoor
    • 1
  1. 1.Department of Molecular BiomedicineCINVESTAVMexico-CityMexico
  2. 2.Department of Infectomics and Molecular PathogenesisCINVESTAVMexico-CityMexico
  3. 3.ConacytMexico-CityMexico
  4. 4.Department of Physiology, Biophysics and NeurosciencesCINVESTAVMexico-CityMexico
  5. 5.Institute of Microbiology and BiotechnologyUniversity of BonnBonnGermany
  6. 6.Molecular Biology Division, Navy Medical CenterMinistry of Marine and ArmyMexico-CityMexico

Personalised recommendations