Skip to main content

Advertisement

Log in

Sodium Butyrate Enhances Intestinal Riboflavin Uptake via Induction of Expression of Riboflavin Transporter-3 (RFVT3)

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Uptake of riboflavin (RF) by intestinal epithelial cells occurs via a specific carrier-mediated process that involves the apically localized RF transporter-3 (RFVT3). Previous studies have shown that sodium butyrate (NaB) affects intestinal uptake of other substrates and expression of their membrane transporters, but its effect on intestinal uptake of RF and expression of RFVT3 has not been examined.

Aims

To investigate the effect of NaB on intestinal RF uptake process and expression of the RFVT3.

Methods

Two experimental models were used in this study: Human-derived intestinal epithelial Caco-2 cells and ex vivo mouse colonoids. 3H-RF uptake assay, Western blot, RT-qPCR, and chromatin immunoprecipitation assay were performed.

Results

Treating Caco-2 cells with NaB led to a significant increase in carrier-mediated RF uptake. This increase was associated with a significant induction in the level of expression of the hRFVT3 protein, mRNA, and heterogenous nuclear RNA (hnRNA). Similarly, treating mouse colonoids with NaB led to a marked increase in the level of expression of the mRFVT3 protein, mRNA, and hnRNA. NaB did not affect hRFVT3 mRNA stability, rather it caused significant epigenetic changes (histone modifications) in the SLC52A3 gene where an increase in H3Ac and a reduction in H3K27me3 levels were observed in the NaB-treated Caco-2 cells compared to untreated controls.

Conclusion

These findings demonstrate that NaB up-regulates intestinal RF uptake and that the effect appears to be mediated, at least in part, at the level of transcription of the SLC52A3 gene and may involve epigenetic mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cooperman JM, Lopez R. Riboflavin. In: Machlin LJ, ed. Handbook of Vitamins: Nutritional, Biochemical and Clinical Aspects. New York: Dekker; 1984:299–327.

    Google Scholar 

  2. Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science. 2000;290:1571–1574.

    Article  CAS  Google Scholar 

  3. Sanches SC, Ramalho LN, Mendes-Bras M, et al. (vitamin B-2) reduces hepatocellular injury following liver ischaemia and reperfusion in mice. Food Chem Toxicol. 2014;67:65–71.

    Article  CAS  Google Scholar 

  4. Liu D, Zempleni J. Low activity of LSD1 elicits a pro-inflammatory gene expression profile in riboflavin-deficient human T Lymphoma Jurkat cells. Genes Nutr. 2014;9:422.

    Article  CAS  Google Scholar 

  5. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14:676–684.

    Article  CAS  Google Scholar 

  6. Mazur-Bialy AI, Buchala B, Plytycz B. Riboflavin deprivation inhibits macrophage viability and activity—a study on the RAW 264.7 cell line. Br J Nutr. 2013;110:509–514.

    Article  CAS  Google Scholar 

  7. Schramm M, Wiegmann K, Schramm S, et al. Riboflavin (vitamin B2) deficiency impairs NADPH oxidase 2 (Nox2) priming and defense against Listeria monocytogenes. Eur J Immunol. 2014;44:728–741.

    Article  CAS  Google Scholar 

  8. Fernandez-Banares F, Abad-Lacruz A, Xiol X, et al. Vitamin status in patients with inflammatory bowel disease. Am J Gastroenterol. 1989;84:744–748.

    CAS  PubMed  Google Scholar 

  9. Rosenthal WS, Adham NF, Lopez R, Cooperman JM. Riboflavin deficiency in complicated chronic alcoholism. Am J Clin Nutr. 1973;26:858–860.

    Article  CAS  Google Scholar 

  10. Kodentsova VM, Vrzhesinskaia OA, Trofimenko EV, et al. The vitamin status of children with diabetes mellitus. Vopr Med Khim. 1994;40:45–48.

    CAS  PubMed  Google Scholar 

  11. Bosch AM, Abeling NG, Ijlst L, et al. Brown–Vialetto–Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis. 2011;34:159–164.

    Article  CAS  Google Scholar 

  12. Green P, Wiseman M, Crow YJ, et al. Brown–Vialetto–Van Laere syndrome, a ponto-bulbar palsy with deafness, is caused by mutations in C20orf54. Am J Hum Genet. 2010;86:485–489.

    Article  CAS  Google Scholar 

  13. Ho G, Yonezawa A, Masuda S, et al. Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric gciduria type 2, 1s caused by a microdeletion in the riboflavin transporter gene GPR172B. Hum Mut. 2011;32:E1976–E1984.

    Article  CAS  Google Scholar 

  14. Johnson JO, Gibbs JR, Megarbane A, et al. Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease. Brain. 2012;185:2875–2882.

    Article  Google Scholar 

  15. Iinuma S. Synthesis of riboflavin by intestinal bacteria. J Vitaminol. 1955;1:6–13. (Kyoto).

    Article  CAS  Google Scholar 

  16. Kasper H. Vitamin absorption in the colon. Am J Protocol. 1970;21:341–345.

    CAS  Google Scholar 

  17. Said HM, Arianas P. Transport of riboflavin in human intestinal brush border membrane vesicles. Gastroenterology. 1991;100:82–88.

    Article  CAS  Google Scholar 

  18. Sorrell MF, Frank O, Thompson AD, Aquino A, Baker H. Absorption of vitamins from the large intestine. Nutr Rep Int. 1971;3:143–148.

    CAS  Google Scholar 

  19. Middleton HM. Uptake of riboflavin by rat intestinal mucosa in vitro. J Nutr. 1985;120:588–593.

    Article  Google Scholar 

  20. Said HM, Ma TY. Regulation of riboflavine intestinal uptake by Caco-2 cells. Am J Physiol. 1994;266:G15–G21.

    CAS  PubMed  Google Scholar 

  21. Said HM, Mohammadkhani R. Uptake of riboflavin across the brush border membrane of rat intestine: regulation by dietary vitamin levels. Gastroenterology. 1993;105:1294–1298.

    Article  CAS  Google Scholar 

  22. Yamamoto S, Inoue K, Ohta KY, et al. Identification and functional characterization of rat riboflavin transporter 2. J Biochem. 2009;145:437–443.

    Article  CAS  Google Scholar 

  23. Yao Y, Yonezawa A, Yoshimatsu H, et al. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J Nutr. 2010;140:1220–1226.

    Article  CAS  Google Scholar 

  24. Yonezawa A, Masuda S, Katsura T, Inui K. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol. 2008;295:C632–C641.

    Article  CAS  Google Scholar 

  25. Yonezawa A, Inui K. Novel riboflavin transporter family RFVT/SLC52: identification, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med. 2013;34:693–701.

    Article  CAS  Google Scholar 

  26. Subramanian VS, Subramanya SB, Rapp L, et al. Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. Biochim Biophys Acta. 2011;1808:3016–3021.

    Article  CAS  Google Scholar 

  27. Subramanian VS, Lambrecht N, Lytle C, Said HM. Conditional (intestinal-specific) knockout of the riboflavin transporter-3 (RFVT-3) impairs riboflavin absorption. Am J Physiol Gastrointest Liver Physiol. 2016;310:G285–G293.

    Article  Google Scholar 

  28. Bosch AM, Stroek K, Abeling NG, et al. The Brown–Vialetto–Van Laere and Fazio Londe syndrome revised: natural history, genetics, treatment and future perspectives. Orphanet J Rare Dis.. 2012;7:83.

    Article  Google Scholar 

  29. Cummings JH. Short chain fatty acids in the human colon. Gut. 1981;22:763–779.

    Article  CAS  Google Scholar 

  30. Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol. 2013;13:869–874.

    Article  CAS  Google Scholar 

  31. Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991;70:443–459.

    Article  CAS  Google Scholar 

  32. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221–1227.

    Article  CAS  Google Scholar 

  33. Wrong O, Metcalfe-gibson A, Morrison RB, Ng ST, Howard AV. In vivo dialysis of faeces as a method of stool analysis. i. technique and results in normal subjects. Clin Sci. 1965;28:357–375.

    CAS  PubMed  Google Scholar 

  34. Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980;21:793–798.

    Article  CAS  Google Scholar 

  35. Dalmasso G, Nguyen HT, Yan Y, et al. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PLoS ONE. 2008;3:e2476.

    Article  Google Scholar 

  36. Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol. 2001;280:G687–G693.

    Article  CAS  Google Scholar 

  37. Xu H, McCoy A, Li J, Zhao Y, Ghishan FK. Sodium butyrate stimulates NHE8 expression via its role on activating NHE8 basal promoter activity. Am J Physiol Gastrointest Liver Physiol. 2015;309:G500–G505.

    Article  CAS  Google Scholar 

  38. Mangian HF, Tappenden KA. Butyrate increases GLUT2 mRNA abundance by initiating transcription in Caco2-BBe cells. JPEN J Parenter Enteral Nutr. 2009;33:607–617.

    Article  CAS  Google Scholar 

  39. Zeissig S, Fromm A, Mankertz J, et al. Butyrate induces intestinal sodium absorption via Sp3-mediated transcriptional up-regulation of epithelial sodium channels. Gastroenterology. 2007;132:236–248.

    Article  CAS  Google Scholar 

  40. Subramanian VS, Ghosal A, Kapadia R, Nabokina SM, Said HM. Molecular mechanisms mediating the adaptive regulation of intestinal riboflavin uptake process. PLoS ONE. 2015;10:e0131698.

    Article  Google Scholar 

  41. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–1772.

    Article  CAS  Google Scholar 

  42. Tsuruta T, Saito S, Osaki Y, et al. Organoids as an ex vivo model for studying the serotonin system in the murine small intestine and colon epithelium. Biochem Biophys Res Commun. 2016;474:161–167.

    Article  CAS  Google Scholar 

  43. Anandam KY, Srinivasan P, Subramanian VS, Said HM. Molecular mechanisms involved in the adaptive regulation of the colonic thiamin pyrophosphate uptake process. Am J Physiol Cell Physiol. 2017;313:C655–C663.

    Article  Google Scholar 

  44. Livek KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta DeltaC (T)) method. Methods. 2001;25:402–408.

    Article  Google Scholar 

  45. Lakhan R, Subramanian VS, Said HM. Role of MicroRNA-423-5p in posttranscriptional regulation of the intestinal riboflavin transporter-3. Am J Physiol Gastrointest Liver Physiol. 2017;313:G589–G598.

    Article  Google Scholar 

  46. Subramanian VS, Sabui S, Teafatiller T, Bohl JA, Said HM. Structure/functional aspects of the human riboflavin transporter-3 (SLC52A3): role of the predicted glycosylation and substrate-interacting sites. Am J Physiol Cell Physiol. 2017;313:C228–C238.

    Article  Google Scholar 

  47. Subramanian VS, Srinivasan P, Said HM. Uptake of ascorbic acid by pancreatic acinar cells is negatively impacted by chronic alcohol exposure. Am J Physiol Cell Physiol. 2016;311:C129–C135.

    Article  Google Scholar 

  48. Reidling JC, Nabokina SM, Said HM. Molecular mechanisms involved in the adaptive regulation of human intestinal biotin uptake: a study of the hSMVT system. Am J Physiol Gastrointest Liver Physiol. 2007;292:G275–G281.

    Article  CAS  Google Scholar 

  49. Li G, Reinberg D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev. 2011;21:175–186.

    Article  CAS  Google Scholar 

  50. Vidali G, Boffa LC, Bradbury EM, Allfrey VG. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci USA. 1978;75:2239–2243.

    Article  CAS  Google Scholar 

  51. Bogliotti YS, Ross PJ. Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics. 2012;7:976–981.

    Article  CAS  Google Scholar 

  52. Sabui S, Subramanian VS, Kapadia R, Said HM. Adaptive regulation of pancreatic acinar mitochondrial thiamin pyrophosphate uptake process: possible involvement of epigenetic mechanism(s). Am J Physiol Gastrointest Liver Physiol. 2017;313:G448–G455.

    Article  Google Scholar 

  53. Ghosal A, Sabui S, Said HM. Identification and characterization of the minimal 5′-regulatory region of the human riboflavin transporter-3 (SLC52A3) in intestinal epithelial cells. Am J Physiol Cell Physiol. 2015;308:C189–C196.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the Department of Veterans Affairs and the NIH (Grants DK107474 to VSS, and DK58057, DK56057, and AA018071 to HMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid M. Said.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, V.S., Sabui, S., Heskett, C.W. et al. Sodium Butyrate Enhances Intestinal Riboflavin Uptake via Induction of Expression of Riboflavin Transporter-3 (RFVT3). Dig Dis Sci 64, 84–92 (2019). https://doi.org/10.1007/s10620-018-5305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5305-z

Keywords

Navigation