Advertisement

Digestive Diseases and Sciences

, Volume 63, Issue 12, pp 3167–3177 | Cite as

Clinician Guide to Microbiome Testing

  • Christopher Staley
  • Thomas Kaiser
  • Alexander Khoruts
Invited Review

Abstract

Recent recognition that the intestinal microbiome plays potential roles in the pathogenesis of multiple common diseases has led to a growing interest in personalized microbiome analysis among clinical investigators and patients. Permissibility of direct access testing has allowed the emergence of commercial companies offering microbiome analysis to patients seeking to gain a better understanding of their symptoms and disease conditions. In turn, physicians are often asked to help with interpretation of such tests or even requested by their patients to order them. Therefore, physicians need to have a basic understanding of the current state of microbiome science. This review examines how the perspective of microbial ecology, which is fundamental to understanding the microbiome, updates the classical version of the germ theory of disease. We provide the essential vocabulary of microbiome science and describe its current limitations. We look forward to the future when microbiome diagnostics may live up to its potential of becoming integral to clinical care that will become increasingly individualized, and microbiome analysis may become incorporated into that future paradigm. However, we caution patients and providers that the current microbiome tests, given the state of knowledge and technology, do not provide much value in clinical decisions. Considerable research remains to be carried out to make this objective a reality.

Keywords

Bacteria Community Disease Dysbiosis Microbiome Next-generation sequencing 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–339.  https://doi.org/10.1136/gutjnl-2015-309990.CrossRefPubMedGoogle Scholar
  2. 2.
    van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–415.  https://doi.org/10.1056/NEJMoa1205037.CrossRefPubMedGoogle Scholar
  3. 3.
    Newman KM, Rank KM, Vaughn BP, Khoruts A. Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease. Gut Microbes. 2017; in press.  https://doi.org/10.1080/19490976.2017.1279377.CrossRefGoogle Scholar
  4. 4.
    Kelly C, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med. 2016;165:609–616.  https://doi.org/10.7326/M16-0271.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sadowsky MJ, Khoruts A. Faecal microbiota transplantation is promising but not a panacea. Nat Microbiol. 2016;1:16015.  https://doi.org/10.1038/nmicrobiol.2016.15.CrossRefPubMedGoogle Scholar
  6. 6.
    Staley C, Khoruts A, Sadowsky MJ. Contemporary applications of fecal microbiota transplantation to treat intestinal diseases in humans. Arch Med Res. 2017;48:766–773.  https://doi.org/10.1016/j.arcmed.2017.11.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341:295–298.  https://doi.org/10.1126/science.1235872.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–628.  https://doi.org/10.1038/nature25979.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bordenave G. Louis Pasteur (1822–1895). Microbes Infect. 2003;5:553–560.  https://doi.org/10.1016/S1286-4579(03)00075-3.CrossRefPubMedGoogle Scholar
  10. 10.
    Koch R. Die aetiologie der tuberkulose. Berliner Klin Wochenschrift. 1882;15:221–230.Google Scholar
  11. 11.
    Bantock GG. The modern doctrine of bacteriology, or the germ theory of disease. Br Med J. 1899;1:846–848.CrossRefGoogle Scholar
  12. 12.
    Podolsky SH. Metchnikoff and the microbiome. Lancet. 2012;380:1810–1811.CrossRefGoogle Scholar
  13. 13.
    Metchnikoff E. The Prolongation of Life: Optimistic Studies. New York: Putnams; 1910.Google Scholar
  14. 14.
    Kellogg JH. The New Dietetics. Battle Creek: Modern Medicine; 1921.Google Scholar
  15. 15.
    Lane WA. The results of the operative treatment of chronic constipation. Br Med J. 1908;1:126–130.CrossRefGoogle Scholar
  16. 16.
    Fisberg M, Machado R. History of yogurt and current patterns of consumption. Nutr Rev. 2015;73:4–7.  https://doi.org/10.1093/nutrit/nuv020.CrossRefPubMedGoogle Scholar
  17. 17.
    Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Heal. 2013;1:52.  https://doi.org/10.3389/fpubh.2013.00052.CrossRefGoogle Scholar
  18. 18.
    Furuya-Kanamori L, Marquess J, Yakob L, et al. Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect Dis. 2015;15:516.  https://doi.org/10.1186/s12879-015-1258-4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–221.  https://doi.org/10.1038/nature11209.CrossRefGoogle Scholar
  20. 20.
    Lloyd-Price J, Mahurkar A, Rahnavard G, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–66.  https://doi.org/10.1038/nature23889.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Byndloss MX, Bäumler AJ. The germ-organ theory of non-communicable diseases. Nat Rev Microbiol. 2018;16:103–110.  https://doi.org/10.1038/nrmicro.2017.158.CrossRefPubMedGoogle Scholar
  22. 22.
    Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol. 1985;39:321–346.  https://doi.org/10.1146/annurev.mi.39.100185.001541.CrossRefPubMedGoogle Scholar
  23. 23.
    Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267.  https://doi.org/10.1126/science.1223813.CrossRefGoogle Scholar
  25. 25.
    Reeves AE, Theriot CM, Bergin IL, et al. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes. 2014;2:145–158.  https://doi.org/10.4161/gmic.2.3.16333.CrossRefGoogle Scholar
  26. 26.
    Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6:e280.  https://doi.org/10.1371/journal.pbio.0060280.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2011;108:4554–4561.  https://doi.org/10.1073/pnas.1000087107.CrossRefPubMedGoogle Scholar
  28. 28.
    Huang SS, Septimus E, Kleinman K, et al. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med. 2013;368:2255–2265.  https://doi.org/10.1056/NEJMoa1207290.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017.  https://doi.org/10.1126/scitranslmed.aah4680.CrossRefGoogle Scholar
  30. 30.
    Lax S, Sangwan N, Smith D, et al. Bacterial colonization and succession of hospital-associated microbiota. Sci Transl Med. 2017.  https://doi.org/10.1126/scitranslmed.aah6500.CrossRefGoogle Scholar
  31. 31.
    Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–365.CrossRefGoogle Scholar
  32. 32.
    Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–380.  https://doi.org/10.1038/nature03959.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:R245–R249.  https://doi.org/10.1016/S1074-5521(98)90108-9.CrossRefPubMedGoogle Scholar
  34. 34.
    Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–12120.CrossRefGoogle Scholar
  35. 35.
    Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–437.  https://doi.org/10.1038/nature12352.CrossRefPubMedGoogle Scholar
  36. 36.
    Staley C, Sadowsky MJ. Application of metagenomics to assess microbial communities in water and other environmental matrices. J Mar Biol Assoc UK. 2016;96:121–129.  https://doi.org/10.1017/S0025315415001496.CrossRefGoogle Scholar
  37. 37.
    Ellison AM. Partitioning diversity. Ecology. 2010;91:1962–1963.  https://doi.org/10.1890/09-1692.1.CrossRefPubMedGoogle Scholar
  38. 38.
    Simpson EH. Measurement of diversity. Nature. 1949;163:688.  https://doi.org/10.1038/163688a0.CrossRefGoogle Scholar
  39. 39.
    Shannon CE, Weaver W. The Mathematical Theory of Communication. Urbana: The University of Illinois Press; 1949.Google Scholar
  40. 40.
    Bent SJ, Forney LJ. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J. 2008;2:689–695.  https://doi.org/10.1038/ismej.2008.44.CrossRefPubMedGoogle Scholar
  41. 41.
    Holmes I, Harris K, Quince C, McInnes P, Wang L. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE. 2012;7:e30126.  https://doi.org/10.1371/journal.pone.0030126.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001;67:4399–4406.  https://doi.org/10.1128/AEM.67.10.4399-4406.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chao A. Non-parametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–270.Google Scholar
  44. 44.
    Chao A, Lee S-M. Estimating the number of classes via sample coverage. J Am Stat Assoc. 1992;87:210–217.  https://doi.org/10.1080/01621459.1992.10475194.CrossRefGoogle Scholar
  45. 45.
    Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:325–349.CrossRefGoogle Scholar
  46. 46.
    Chao A, Chazdon RL, Colwell RK, Shen T-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett. 2004;8:148–159.  https://doi.org/10.1111/j.1461-0248.2004.00707.x.CrossRefGoogle Scholar
  47. 47.
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–8235.CrossRefGoogle Scholar
  48. 48.
    Martin AP. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol. 2002;68:3673–3682.  https://doi.org/10.1128/AEM.68.8.3673-3682.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–838.  https://doi.org/10.1038/ismej.2012.160.CrossRefPubMedGoogle Scholar
  50. 50.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230.  https://doi.org/10.1038/nature11550.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227.  https://doi.org/10.1038/nature11053.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–786.  https://doi.org/10.1016/J.CMET.2014.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Guarner F. Hygiene, microbial diversity and immune regulation. Curr Opin Gastroenterol. 2007;23:667–672.  https://doi.org/10.1097/MOG.0b013e3282eeb43b.CrossRefPubMedGoogle Scholar
  54. 54.
    Claesson MJ, O’Sullivan O, Wang Q, et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE. 2009;4:e6669.  https://doi.org/10.1371/journal.pone.0006669.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Earth Microbiome Project Consortium. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457.  https://doi.org/10.1038/nature24621.CrossRefGoogle Scholar
  56. 56.
    Keesing F, Belden LK, Daszak P, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652.  https://doi.org/10.1038/nature09575.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM. Host adaptive immunity alters gut microbiota. ISME J. 2015;9:770–781.  https://doi.org/10.1038/ismej.2014.165.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee SC, Tang MS, Lim YAL, et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis. 2014;8:e2880.  https://doi.org/10.1371/journal.pntd.0002880.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Audebert C, Even G, Cian A, et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6:25255.  https://doi.org/10.1038/srep25255.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiom in obese and lean twins. Nature. 2009;457:480–484.  https://doi.org/10.1038/nature07540.A.CrossRefPubMedGoogle Scholar
  61. 61.
    Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–693.  https://doi.org/10.1136/GUT.2003.025403.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638.  https://doi.org/10.1126/science.1110591.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50.  https://doi.org/10.1186/gb-2011-12-5-r50.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–2584.  https://doi.org/10.1111/j.1462-2920.2009.01982.x.CrossRefPubMedGoogle Scholar
  65. 65.
    Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180.  https://doi.org/10.1038/nature09944.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol. 2012;10:591–592.  https://doi.org/10.1038/nrmicro2859.CrossRefPubMedGoogle Scholar
  67. 67.
    Knights D, Ward TL, McKinlay CE, et al. Rethinking “Enterotypes”. Cell Host Microbe. 2014;16:433–437.  https://doi.org/10.1016/j.chom.2014.09.013.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gilbert JA, Dupont CL. Microbial metagenomics: beyond the genome. Annu Rev Mar Sci. 2011;3:347–371.  https://doi.org/10.1146/annurev-marine-120709-142811.CrossRefGoogle Scholar
  69. 69.
    Claesson MJ, Wang QO, O’Sullivan O, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010.  https://doi.org/10.1093/nar/gkq873.CrossRefGoogle Scholar
  70. 70.
    Youssef N, Sheik CS, Krumholz LR, et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol. 2009;75:5227–5236.  https://doi.org/10.1128/AEM.00592-09.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS ONE. 2013;8:e53608.  https://doi.org/10.1371/journal.pone.0053608.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.  https://doi.org/10.1038/nri2515.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–725.  https://doi.org/10.1038/nrmicro2873.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–638.  https://doi.org/10.1038/nrmicro.2017.58.CrossRefPubMedGoogle Scholar
  75. 75.
    Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit Care Med. 2017;45:337–347.  https://doi.org/10.1097/CCM.0000000000002172.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18:851–860.  https://doi.org/10.1038/ni.3780.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–821.  https://doi.org/10.1038/nbt.2676.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–2884.  https://doi.org/10.1093/bioinformatics/btv287.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol. 2015;13:360–372.  https://doi.org/10.1038/nrmicro3451.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Jovel J, Patterson J, Wang W, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459.  https://doi.org/10.3389/fmicb.2016.00459.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Moran MA, Satinsky B, Gifford SM, et al. Sizing up metatranscriptomics. ISME J. 2013;7:237–243.  https://doi.org/10.1038/ismej.2012.94.CrossRefPubMedGoogle Scholar
  82. 82.
    Verberkmoes NC, Russell AL, Shah M, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3:179–189.  https://doi.org/10.1038/ismej.2008.108.CrossRefPubMedGoogle Scholar
  83. 83.
    Ellermann M, Carr JS, Fodor AA, Arthur JC, Carroll IM. Characterizing and Functionally Defining the Gut Microbiota: Methodology and Implications. In: Floch MH, Ringel Y, Walker WA, eds. Microbiota in Gastrointestinal Pathophysiology. London: Elsevier; 2017:15–25.  https://doi.org/10.1016/b978-0-12-804024-9.00002-1.CrossRefGoogle Scholar
  84. 84.
    Almonacid DE, Kraal L, Ossandon FJ, et al. 16S rRNA gene sequencing and healthy reference ranges for 28 clinically relevant microbial taxa from the human gut microbiome. PLoS ONE. 2017;12:1–15.  https://doi.org/10.1371/journal.pone.0176555.CrossRefGoogle Scholar
  85. 85.
    Zmora N, Zeevi D, Korem T, Segal E, Elinav E. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe. 2016;19:12–20.  https://doi.org/10.1016/j.chom.2015.12.016.CrossRefPubMedGoogle Scholar
  86. 86.
    Shukla SK, Murali NS, Brilliant MH. Personalized medicine going precise: from genomics to microbiomics. Trends Mol Med. 2015;21:461–462.  https://doi.org/10.1016/j.molmed.2015.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    The Human Microbiome Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.  https://doi.org/10.1038/nature11234.CrossRefGoogle Scholar
  88. 88.
    Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s Disease. Cell Host Microbe. 2014;15:382–392.  https://doi.org/10.1016/J.CHOM.2014.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Gevers D, Kugathasan S, Knights D, et al. A microbiome foundation for the study of Crohn’s Disease. Cell Host Microbe. 2017;21:301–304.  https://doi.org/10.1016/J.CHOM.2017.02.012.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Le K, Somineni H, Venkateswaran S, et al. P150 Microbiome Risk Score (MRS) in the diagnosis and classification of inflammatory bowel disease. Gastroenterology. 2018;154:S79.  https://doi.org/10.1053/J.GASTRO.2017.11.199.CrossRefGoogle Scholar
  91. 91.
    Pascal V, Pozuelo M, Borruel N, et al. A microbial signature for Crohn’s disease. Gut. 2017; in press.  https://doi.org/10.1136/gutjnl-2016-313235.CrossRefGoogle Scholar
  92. 92.
    Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE. 2014;9:e84689.  https://doi.org/10.1371/journal.pone.0084689.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Debelius JW, Vázquez-Baeza Y, McDonald D, et al. Turning participatory microbiomeresearch into usable data: lessons from the American Gut Project. J Microbiol Biol Educ. 2016;17:46–50.  https://doi.org/10.1128/jmbe.v17i1.1034.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–440.  https://doi.org/10.1038/nrmicro1872.CrossRefPubMedGoogle Scholar
  95. 95.
    Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581–1592.  https://doi.org/10.1016/J.CELL.2018.05.015.CrossRefPubMedGoogle Scholar
  96. 96.
    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920.  https://doi.org/10.1126/science.1104816.CrossRefPubMedGoogle Scholar
  97. 97.
    He Y, Wu W, Zheng H-M, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018; in press.  https://doi.org/10.1038/s41591-018-0164-x.CrossRefGoogle Scholar
  98. 98.
    American Gut Consortium. American Gut: an open platform for citizen science microbiome research. mSystems. 2018.  https://doi.org/10.1128/msystems.00031-18.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of MinnesotaMinneapolisUSA
  2. 2.Biotechnology InstituteUniversity of MinnesotaSt. PaulUSA
  3. 3.Division of Gastroenterology, Department of MedicineUniversity of MinnesotaMinneapolisUSA

Personalised recommendations