Advertisement

Digestive Diseases and Sciences

, Volume 64, Issue 1, pp 25–38 | Cite as

Research Progress on the Relationship Between Acute Pancreatitis and Calcium Overload in Acinar Cells

  • Siqing Feng
  • Qiongqiong Wei
  • Qing Hu
  • Xiaomei Huang
  • Xi Zhou
  • Gang Luo
  • Mingming DengEmail author
  • Muhan LüEmail author
Review
  • 110 Downloads

Abstract

Acute pancreatitis is a human disease with multiple causes that leads to autodigestion of the pancreas. There is sufficient evidence to support the key role of sustained increase in cytosolic calcium concentrations in the early pathogenesis of the disease. To clarify the mechanism of maintaining calcium homeostasis in the cell and pathological processes caused by calcium overload would help to research directly targeted therapeutic agents. We will specifically review the following: intracellular calcium homeostasis and regulation, the occurrence of calcium overload in acinar cells, the role of calcium overload in the pathogenesis of AP, the treatment strategy proposed for calcium overload.

Keywords

Pancreatitis Acinar cells Calcium Pathophysiology Therapy 

Abbreviations

AP

Acute pancreatitis

Ca2+

Calcium

PACs

Pancreatic acinar cells

[Ca2+]e

Extracellular Ca2+ concentration

[Ca2+]c

The cytosolic Ca2+ concentration

PM

Plasma membrane

ER

Endoplasmic reticulum

SR

Sarcoplasmic reticulum

InsP3

Inositol 1,4,5-trisphosphate

InsP3Rs

InsP3 receptors

RyRs

Ryanodine receptors

FAEEs

Fatty acid ethyl esters

PIP2

Phosphatidylinositol(4,5)bisphosphate

DG

Diacylglycerol

IICR

InsP3-induced Ca2+ release

InsP3R1

The type 1 InsP3R

InsP3R2

The type 2 InsP3R

InsP3R3

The type 3 InsP3R

ATP

Adenosine triphosphate

WT

Wild-type

ZGs

Zymogen granules

cADPR

Cyclic ADP ribose

CICR

Calcium-induced calcium release

SCaMPER

Sphingolipid Ca2+ release-mediating protein of the endoplasmic reticulum

VOCCs

Voltage-operated Ca2+ channels

SOCCs

Store-operated Ca2+ channels

TRPC

Transient receptor potential channel

STIM1

Stromal interaction molecule 1

Ach

Acetylcholine

ROCCs

Receptor-operated Ca2+ channels

PKC

Protein kinase C

MPO

Myeloperoxidase

PMCA

Ca2+-ATPase on the plasma membrane

[Ca2+]i

Intracellular calcium concentration

NCX

Na+/Ca2+ exchange

SERCA

SR/ER Ca2+-ATPase

TAP

Trypsinogen-activating peptide

MPTP

Mitochondrial permeability transition pore

PLA2

Phospholipase A2

TXA2

Thromboxane A2

PGI2

Prostacyclin

PAF

Platelet-activating factor

xDH

Xanthine dehydrogenase

XOD

Xanthine oxidase

OFRs

Oxygen free radicals

ROS

Reactive oxygen species

CRAC

Calcium release activation of calcium

NAC

N-acetylcysteine

sAC

Soluble adenylyl cyclase

cAMP

Cyclic adenosine monophosphate

LDH

Lactate dehydrogenase

Cyp D

Cyclophilin D

PACs

Pancreatic acinar cells

Ψm

Mitochondrial membrane potential

Notes

Acknowledgment

This work was supported by the Affiliated Hospital of Southwest Medical University.

Funding

This article was funded by the following fund project: “The role and mechanism of calcium channels in hyperlipidemia acute pancreatitis,” project number: 2015LZCYD-S04 (6/15).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Li Z, Wang G, Zhen G, Zhang Y, Liu J, Liu S. Effects of hemodialysis combined with hemoperfusion on severe acute pancreatitis. Turk J Gastroenterol Off J Turk Soc Gastroenterol. 2018;29:198.Google Scholar
  2. 2.
    Parys JB, Bultynck G. Ca2+ signaling and cell death: focus on the role of Ca2+ signals in the regulation of cell death & survival processes in health, disease and therapy. Cell Calcium. 2018;70:1–2.PubMedGoogle Scholar
  3. 3.
    Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.PubMedGoogle Scholar
  4. 4.
    朱大年, 王庭槐. 生理学.第8版. 人民卫生出版社. 2013.Google Scholar
  5. 5.
    张肇达. 急性胰腺炎. 人民卫生出版社. 2004.Google Scholar
  6. 6.
    Criddle DN, Murphy J, Fistetto G, et al. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology. 2006;130:781.PubMedGoogle Scholar
  7. 7.
    Gerasimenko JV, Lur G, Sherwood MW, et al. Pancreatic protease activation by alcohol metabolite depends on Ca2+ release via acid store IP3 receptors. Proc Natl Acad Sci USA. 2009;106:10758.PubMedGoogle Scholar
  8. 8.
    Petersen OH, Tepikin AV, Gerasimenko JV, Gerasimenko OV, Sutton R, Criddle DN. Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca signal generation and pancreatitis. Cell Calcium. 2009;45:634–642.PubMedGoogle Scholar
  9. 9.
    Petersen OH, Gerasimenko OV, Tepikin AV, Gerasimenko JV. Aberrant Ca(2+) signalling through acidic calcium stores in pancreatic acinar cells. Cell Calcium. 2011;50:193–199.PubMedGoogle Scholar
  10. 10.
    Carreras-Sureda A, Pihán P, Hetz C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. Cell Calcium. 2018;70:24–31.PubMedGoogle Scholar
  11. 11.
    Muallem S, Chung WY, Jha A, Ahuja M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep. 2017;18:e201744331.Google Scholar
  12. 12.
    Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361:315–325.PubMedGoogle Scholar
  13. 13.
    Weng N, Baumler MD, Thomas DD, et al. Functional role of J domain of cysteine string protein in Ca2+-dependent secretion from acinar cells. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1030–G1039.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lur G, Sherwood MW, Ebisui E, et al. InsP(3) receptors and orai channels in pancreatic acinar cells: co-localization and its consequences. Biochem J. 2011;436:231–239.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang L, Nd WL, Alzayady KJ, Yule DI. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity. J Biol Chem. 2017;292:11714.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Park HS, Betzenhauser MJ, Won JH, Chen J, Yule DI. The type 2 inositol (1,4,5)-trisphosphate (InsP3) receptor determines the sensitivity of InsP3-induced Ca2+ release to ATP in pancreatic acinar cells. J Biol Chem. 2008;283:26081–26088.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Tu H, Wang Z, Bezprozvanny I. Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J. 2005;88:1056–1069.PubMedGoogle Scholar
  18. 18.
    Orabi AI, Luo YH, Ahmad MU, et al. IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. Plos One. 2012;7:e48465.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gerasimenko JV, Gerasimenko OV, Petersen OH. The role of Ca2+ in the pathophysiology of pancreatitis. J Physiol. 2014;592:269–280.PubMedGoogle Scholar
  20. 20.
    Bootman MD, Collins TJ, Peppiatt CM, et al. Calcium signalling–an overview. Semin Cell Dev Biol. 2001;12:3–10.PubMedGoogle Scholar
  21. 21.
    Choi KJ, Cho DS, Kim JY, et al. Ca-induced Ca release from internal stores in INS-1 rat insulinoma cells. Korean J Physiol Pharmacol. 2011;15:53–59.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gerasimenko JV, Flowerdew SE, Voronina SG, et al. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J Biol Chem. 2006;281:40154.PubMedGoogle Scholar
  23. 23.
    Husain SZ, Prasad P, Grant WM, Kolodecik TR, Nathanson MH, Gorelick FS. The ryanodine receptor mediates early zymogen activation in pancreatitis. Proc Natl Acad Sci USA. 2005;102:14386–14391.PubMedGoogle Scholar
  24. 24.
    Geyer N, Diszhazi G, Csernoch L, Jona I, Almassy J. Bile acids activate ryanodine receptors in pancreatic acinar cells via a direct allosteric mechanism. Cell Calcium. 2015;58:160–170.PubMedGoogle Scholar
  25. 25.
    Won JH, Cottrell WJ, Foster TH, Yule DI. Ca2+ release dynamics in parotid and pancreatic exocrine acinar cells evoked by spatially limited flash photolysis. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1166–G1177.PubMedGoogle Scholar
  26. 26.
    Young KW, Challiss RA, Nahorski SR, Mackrill JJ. Lysophosphatidic acid-mediated Ca2+ mobilization in human SH-SY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation. Biochem J. 1999;343:45.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Schnurbus R, De PTD, Grohovaz F, Zacchetti D. Re-evaluation of primary structure, topology, and localization of Scamper, a putative intracellular Ca2+ channel activated by sphingosylphosphocholine. Biochem J. 2002;362:183–189.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Cullen PJ. Bridging the GAP in inositol 1,3,4,5-tetrakisphosphate signalling. Biochim Biophys Acta. 1998;1436:35–47.PubMedGoogle Scholar
  29. 29.
    Clapham DE. Calcium signaling. Cell. 2007;131:1047–1058.PubMedGoogle Scholar
  30. 30.
    Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67:821–870.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Petersen O. Can specific calcium channel blockade be the basis for a drug-based treatment of acute pancreatitis? Exp Rev Gastroenterol Hepatol. 2014;8:339–341.Google Scholar
  32. 32.
    Putney JW Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12.PubMedGoogle Scholar
  33. 33.
    Balla T. Ca2+ and lipid signals hold hands at ER-plasma membrane contact sites. J Physiol. 2018;596:2709–2716.PubMedGoogle Scholar
  34. 34.
    Kim JY, Zeng W, Kiselyov K, et al. Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane. J Biol Chem. 2006;281:32540–32549.PubMedGoogle Scholar
  35. 35.
    Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA. Molecular basis of the CRAC channel. Cell Calcium. 2007;42:133–144.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Liou J, Man LK, Heo WD, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–1241.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Sabourin J, Le Gal L, Saurwein L, Haefliger JA, Raddatz E, Allagnat F. Store-operated Ca2+ entry mediated by orai1 and TRPC1 participates to insulin secretion in rat beta-cells. J Biol Chem. 2015;290:30530–30539.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Sabourin J, Allagnat F. Store-operated Ca2+ entry: a key component of the insulin secretion machinery. J Mol Endocrinol. 2016;57:F35–F39.PubMedGoogle Scholar
  39. 39.
    Kim MS, Hong JH, Li Q, et al. Deletion of TRPC3 in mice reduces store-operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology. 2009;137:1509–1517.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang G, Zhang J, Xu C, Han X, Gao Y, Chen H. Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in rats and PMVECs injury induced by lipopolysaccharide. Inflammation. 2016;39:1049–1058.PubMedGoogle Scholar
  41. 41.
    Song AM, Bhagat L, Singh VP, Van Acker GG, Steer ML, Saluja AK. Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1166–G1174.PubMedGoogle Scholar
  42. 42.
    Wagner J, Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994;67:447–456.PubMedPubMedCentralGoogle Scholar
  43. 43.
    章毅. 大鼠胰岛β 细胞钙离子缓冲力及其对分泌的影响, 山西医科大学. 2004.Google Scholar
  44. 44.
    Mogami H, Gardner J, Gerasimenko OV, Camello P, Petersen OH, Tepikin AV. Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. J Physiol. 2010;518:463–467.Google Scholar
  45. 45.
    Ferdek PE, Gerasimenko JV, Peng S, Tepikin AV, Petersen OH, Gerasimenko OV. A novel role for Bcl-2 in regulation of cellular calcium extrusion. Curr Biol. 2012;22:1241–1246.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bruce JIE. Metabolic regulation of the PMCA: role in cell death and survival☆. Cell Calcium. 2017;69:28–36.PubMedGoogle Scholar
  47. 47.
    Bayerdorffer E, Haase W, Schulz I. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells. J Membr Biol. 1985;87:107–119.PubMedGoogle Scholar
  48. 48.
    Muallem S, Beeker T, Pandol SJ. Role of Na+/Ca2+ exchange and the plasma membrane Ca2+ pump in hormone-mediated Ca2+ efflux from pancreatic acini. J Membr Biol. 1988;102:153–162.PubMedGoogle Scholar
  49. 49.
    Matthews EK, Petersen OH. Pancreatic acinar cells: ionic dependence of the membrane potential and acetylcholine-induced depolarization. J Physiol. 1973;231:283–295.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Douglas WW. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968;34:451–474.PubMedGoogle Scholar
  51. 51.
    Qiu Y, Li YY, Li SG, Song BG, Zhao GF. Effect of qingyitang on activity of intracellular Ca2+-Mg2+-ATPase in rats with acute pancreatitis. World J Gastroenterol. 2004;10:100–104.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim JY, Kim KH, Lee JA, et al. Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. Gastroenterology. 2002;122:1941–1953.PubMedGoogle Scholar
  53. 53.
    Fischer L, Gukovskaya AS, Young SH, et al. Phosphatidylinositol 3-kinase regulates Ca2+ signaling in pancreatic acinar cells through inhibition of sarco(endo) plasmic reticulum Ca2+-ATPase. Am J Physiol Gastroint Liver Physiol. 2004;287:G1200.Google Scholar
  54. 54.
    Rossi CS, Lehninger AL. Stoichiometric relationships between accumulation of ions by mitochondria and the energy-coupling sites in the respiratory chain. Biochem Z. 1963;338:698.PubMedGoogle Scholar
  55. 55.
    Scarpa A, Graziotti P. Mechanisms for intracellular calcium regulation in heart : I. Stopped-flow measurements of Ca++ uptake by cardiac mitochondria. J Gen Phys. 1973;62:756.Google Scholar
  56. 56.
    Bragadin M, Pozzan T, Azzone GF. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry. 1979;18:5972–5978.PubMedGoogle Scholar
  57. 57.
    Bruce JI, Elliott AC. Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol. 2007;293:C938–C950.PubMedGoogle Scholar
  58. 58.
    Fonteriz R, Matesanz-Isabel J, Arias-Del-Val J, Alvarez-Illera P, Montero M, Alvarez J. Modulation of calcium entry by mitochondria. Adv Exp Med Biol. 2016;898:405–421.PubMedGoogle Scholar
  59. 59.
    Palty R, Reuter H. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA. 2010;107:436.PubMedGoogle Scholar
  60. 60.
    Shearer MG, Imrie CW. Parathyroid hormone levels, hyperparathyroidism and acute pancreatitis. Br J Surg. 1986;73:282–284.PubMedGoogle Scholar
  61. 61.
    Cope O, Culver PJ, Mixter CG Jr, Nardi GL. Pancreatitis, a diagnostic clue to hyperparathyroidism. Ann Surg. 1957;145:857–863.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Mixter CG, Keynes WM, Cope O. Further experience with pancreatitis as a diagnostic clue to hyperparathyroidism. Calif Med. 1962;96:55.Google Scholar
  63. 63.
    Clark OH. Hyperparathyroidism and pancreatitis. Jama J Am Med Assoc. 1980;243:246–247.Google Scholar
  64. 64.
    Khoo TK, Vege SS, Abulebdeh HS, Ryu E, Nadeem S, Wermers RA. Acute pancreatitis in primary hyperparathyroidism: a population-based study. J Clin Endocrinol Metab. 2009;94:2115–2118.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Sitges-Serra A, Alonso M, Lecea CD, Gores PF, Sutherland DER. Pancreat hyperparathyroidism. 1988;75:158–160.Google Scholar
  66. 66.
    Frick TW, Spycher MA, Heitz PU, Largiader F, Goodale RL. Hypercalcaemia and pancreatic ultrastructure in cats. Eur J Surg. 1992;158:289–294.PubMedGoogle Scholar
  67. 67.
    Mithöfer K, Fernándezdel CC, Frick TW, Lewandrowski KB, Rattner DW, Warshaw AL. Acute hypercalcemia causes acute pancreatitis and ectopic trypsinogen activation in the rat. Gastroenterology. 1995;109:239–246.PubMedGoogle Scholar
  68. 68.
    Ward JB, Petersen OH, Jenkins SA, Sutton R. Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet. 1995;346:1016–1019.PubMedGoogle Scholar
  69. 69.
    Mukherjee R, Mareninova OA, Odinokova IV, et al. Original article: mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016;65:1333–1346.PubMedGoogle Scholar
  70. 70.
    Petersen OH, Courjaret R, Machaca K. Ca2+ tunnelling through the ER lumen as a mechanism for delivering Ca2+ entering via store-operated Ca2+ channels to specific target sites. J Phys. 2017;595:2999.Google Scholar
  71. 71.
    Gorelick FS, Thrower E. The acinar cell and early pancreatitis responses. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2009;7:S10.Google Scholar
  72. 72.
    Petersen OH, Tepikin AV, Gerasimenko JV, Gerasimenko OV, Sutton R, Criddle DN. Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis. Cell Calcium. 2009;45:634–642.PubMedGoogle Scholar
  73. 73.
    Yu HG, Klonowski-Stumpe H. Ethacrynic acid inhibits pancreatic exocrine secretion. Acta Pharmacol Sin. 2001;22:961–965.PubMedGoogle Scholar
  74. 74.
    Liang HY, Song ZM, Cui ZJ. Lasting inhibition of receptor-mediated calcium oscillations in pancreatic acini by neutrophil respiratory burst–a novel mechanism for secretory blockade in acute pancreatitis? Biochem Biophys Res Commun. 2013;437:361–367.PubMedGoogle Scholar
  75. 75.
    Petersen OH, Gerasimenko OV, Gerasimenko JV. Pathobiology of acute pancreatitis: focus on intracellular calcium and calmodulin. F1000 Med Rep. 2011;3:15.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Petersen OH. Ca2+-induced pancreatic cell death: roles of the endoplasmic reticulum, zymogen granules, lysosomes and endosomes. J Gastroenterol Hepatol.. 2008;23:S31–S36.PubMedGoogle Scholar
  77. 77.
    Waterford SD, Kolodecik TR, Thrower EC, Gorelick FS. Vacuolar ATPase regulates zymogen activation in pancreatic acini. J Biol Chem. 2005;280:5430.PubMedGoogle Scholar
  78. 78.
    Kukor Z, Mayerle J, Kruger B, et al. Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem. 2002;277:21389–21396.PubMedGoogle Scholar
  79. 79.
    Saluja AK, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, Steer ML. Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology. 1997;113:304.PubMedGoogle Scholar
  80. 80.
    Foitzik T, Fernándezdel CC, Ferraro MJ, Mithöfer K, Rattner DW, Warshaw AL. Pathogenesis and prevention of early pancreatic infection in experimental acute necrotizing pancreatitis. Ann Surg. 1995;222:179.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Therapy. 2009;23:49–59.Google Scholar
  82. 82.
    Liu LR, Xia SH. Role of platelet-activating factor in the pathogenesis of acute pancreatitis. World J Gastroenterol. 2006;12:539–545.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Dabrowski A, Osada J, Dabrowska MI, Wereszczynska-Siemiatkowska U, Siemiatkowski A. Increased expression of the intercellular adhesion molecule-1 (ICAM-1) on peripheral blood neutrophils in acute pancreatitis. Adv Med Sci. 2014;59:102–107.PubMedGoogle Scholar
  84. 84.
    Roudebush WE, Wild MD, Maguire EH. Expression of the platelet-activating factor receptor in human spermatozoa: differences in messenger ribonucleic acid content and protein distribution between normal and abnormal spermatozoa. Fertil Steril. 2000;73:967.PubMedGoogle Scholar
  85. 85.
    Muili KA, Wang D, Orabi AI, et al. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem. 2013;288:570.PubMedGoogle Scholar
  86. 86.
    Chen ZH, Liu ZH, Yu C, Ji DX, Li LS. Endothelial dysfunction in patients with severe acute pancreatitis: improved by continuous blood purification therapy. Int J Artif Organs. 2007;30:393.PubMedGoogle Scholar
  87. 87.
    Fujimura K, Kubota Y, Ogura M, et al. Role of endogenous platelet-activating factor in caerulein-induced acute pancreatitis in rats: protective effects of a PAF-antagonist. J Gastroenterol Hepatol. 1992;7:199.PubMedGoogle Scholar
  88. 88.
    Ji RL, Xia SH, Di Y, Xu W. Mechanism and dose-effect of Ginkgolide B on severe acute pancreatitis of rats. World J Gastroenterol. 2011;17:2241.PubMedPubMedCentralGoogle Scholar
  89. 89.
    孙红, 刘戟. 腺泡细胞钙超载与急性胰腺炎关系研究进展. 重庆医学. 2013;42:3826–3829.Google Scholar
  90. 90.
    Hackert T, Werner J. Antioxidant therapy in acute pancreatitis: experimental and clinical evidence. Antioxid Redox Signal. 2011;15:2767.PubMedGoogle Scholar
  91. 91.
    Grupe M, Myers G, Penner R, Fleig A. Activation of store-operated ICRAC by hydrogen peroxide. Cell Calcium. 2010;48:1–9.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Ramudo L, Manso MA. N-acetylcysteine in acute pancreatitis. World J Gastrointest Pharmacol Therap. 2010;1:21.Google Scholar
  93. 93.
    Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol and obesity induced fatty liver diseases. Free Radic Biol Med. 2008;44:1259.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Frick TW. The role of calcium in acute pancreatitis. Surgery. 2012;152:S157.PubMedGoogle Scholar
  95. 95.
    Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology. 2018;154:689–703.PubMedGoogle Scholar
  96. 96.
    Huai J, Shao Y, Sun X, Jin Y, Wu J, Huang Z. Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatol Off J Int Assoc Pancreatol (IAP).. 2012;12:257.Google Scholar
  97. 97.
    Choi KJ, Kim KS, Kim SH, Kim DK, Park HS. Caffeine and 2-aminoethoxydiphenyl borate (2-APB) have different ability to inhibit intracellular calcium mobilization in pancreatic acinar cell. Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol. 2010;14:105–111.Google Scholar
  98. 98.
    Huang W, Cane MC, Mukherjee R, et al. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release. Gut. 2017;66:301–313.PubMedGoogle Scholar
  99. 99.
    Wen L, Voronina S, Javed MA, et al. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 Mouse models. Gastroenterology. 2015;149:481.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Vervliet T, Gerasimenko JV, Ferdek PE, et al. BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discov. 2018;4:58.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Qiu Y, Li Y-Y, Li S-G, Song B-G, Zhao G-F. Effect of Qingyitang on activity of intracellular Ca^2+-Mg^2+-ATPase in rats with acute pancreatitis. World J Gastroenterol. 2004;10:100–104.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Xue P, Deng LH, Zhang ZD, et al. Effect of Chaiqinchengqi decoction on sarco/endoplasmic reticulum Ca2+-ATPase mRNA expression of pancreatic tissues in acute pancreatitis rats. 世界胃肠病学杂志 (英文版). 2008;14:2343–2348.Google Scholar
  103. 103.
    Wang L, Ma Q, Chen X, Sha H, Ma Z. Effects of resveratrol on calcium regulation in rats with severe acute pancreatitis. Eur J Pharmacol. 2008;580:271.PubMedGoogle Scholar
  104. 104.
    Jha RK, Ma Q, Lei Z, Sha H. Resveratrol ameliorates the deleterious effect of severe acute pancreatitis. Cell Biochem Biophys. 2012;62:397–402.PubMedGoogle Scholar
  105. 105.
    Ma Q, Zhang M, Wang Z, Ma Z, Sha H. The beneficial effect of resveratrol on severe acute pancreatitis. Ann N Y Acad Sci. 2011;1215:96.PubMedGoogle Scholar
  106. 106.
    Zhu ZD, Yu T, Liu HJ, Jin J, He J. SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis. 2018;9:50.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Shah AU, Sarwar A, Orabi AI, et al. Protease activation during in vivo pancreatitis is dependent on calcineurin activation. Am J Physiol Gastrointest Liver Physiol. 2009;136:G967.Google Scholar
  108. 108.
    Muili KA, Ahmad M, Orabi AI, et al. Pharmacological and genetic inhibition of calcineurin protects against carbachol-induced pathological zymogen activation and acinar cell injury. Am J Physiol Gastrointest Liver Physiol. 2012;302:G898.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Wen L, Javed TA, Yimlamai D, Mukherjee A, Xiao X, Husain SZ. Transient high pressure in pancreatic ducts promotes inflammation and alters tight junctions via calcineurin signaling in mice. Gastroenterology. 2018.  https://doi.org/10.1053/j.gastro.2018.06.036.CrossRefPubMedGoogle Scholar
  110. 110.
    Orabi AI, Wen L, Javed TA, et al. Targeted inhibition of pancreatic acinar cell calcineurin is a novel strategy to prevent post-ERCP pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:119.PubMedGoogle Scholar
  111. 111.
    Kolodecik TR, Shugrue CA, Thrower EC, Levin LR, Buck J, Gorelick FS. Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreatic acinar cells. Plos One. 2012;7:e41320.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Onur E, Paksoy M, Baca B, Akoglu H. Hyperbaric oxygen and N-acetylcysteine treatment in l-arginine-induced acute pancreatitis in rats. J Investig Surg Off J Acad Surg Res. 2012;25:20.Google Scholar
  113. 113.
    Sateesh J, Bhardwaj P, Singh N, Saraya A. Effect of antioxidant therapy on hospital stay and complications in patients with early acute pancreatitis: a randomised controlled trial. Trop Gastroenterol Off J Dig Dis Found. 2010;30:201.Google Scholar
  114. 114.
    Shore ER, Awais M, Kershaw NM, et al. Small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis. J Med Chem. 2016;59:2596.PubMedGoogle Scholar
  115. 115.
    Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016;65:1333.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Siqing Feng
    • 1
  • Qiongqiong Wei
    • 1
  • Qing Hu
    • 2
  • Xiaomei Huang
    • 1
  • Xi Zhou
    • 2
  • Gang Luo
    • 2
  • Mingming Deng
    • 2
    Email author
  • Muhan Lü
    • 2
    Email author
  1. 1.Southwest Medical UniversityLuzhouChina
  2. 2.Department of GastroenterologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina

Personalised recommendations