Advertisement

Digestive Diseases and Sciences

, Volume 63, Issue 10, pp 2500–2506 | Cite as

Gut Movements: A Review of the Physiology of Gastrointestinal Transit

  • Dennis Kumral
  • Alvin M. Zfass
Mentored Reviews
  • 134 Downloads

Abstract

The well-regulated mechanisms of intestinal transit favor aboral movement of intestinal contents during the formation of normal stool. Electrical pacemakers initiate mechanical smooth muscular propulsion under regulation by the enteric nervous system—a function of the “brain-gut axis.” Several unique intestinal motor patterns function in concert to enhance the activities of intestinal transit. Development of pharmacologic targets of intestinal transit mechanisms afford clinicians control in the management of functional gastrointestinal disorders. This review highlights the important physiologic events of intestinal transit, discusses selected pharmacologic and neuromodulators involved in these processes, and provides relevant clinical correlates to physiologic events.

Keywords

Intestinal transit Gastrointestinal physiology Gastrointestinal transit Peristalsis Gastrointestinal pharmacology 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no relevant financial disclosures to report.

References

  1. 1.
    Johnson LR. Physiology of the gastrointestinal tract. 5th ed. London: Elsevier; 2012.Google Scholar
  2. 2.
    Costanzo LS. Physiology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2006.Google Scholar
  3. 3.
    Miftahof R, Akhmadeev N. Dynamics of intestinal propulsion. J Theor Biol. 2007;246:377–393.CrossRefGoogle Scholar
  4. 4.
    Feldman M, Friedman LS, Brandt LJ. Sleisenger and Fordtran’s gastrointestinal and liver disease: pathophysiology/diagnosis/management. 10th ed.Google Scholar
  5. 5.
    Albibi R, McCallum RW. Metoclopramide: pharmacology and clinical application. Ann Intern Med. 1983;98:86–95.CrossRefGoogle Scholar
  6. 6.
    Armitage AK, Dean AC. Function of the pylorus and pyloric antrum in gastric emptying. Gut. 1963;4:174–178.CrossRefGoogle Scholar
  7. 7.
    Maljaars PW, Peters HP, Mela DJ, et al. Ileal brake: a sensible food target for appetite control. A review. Physiol Behav. 2008;95:271–281.CrossRefGoogle Scholar
  8. 8.
    van Avesaat M, Troost FJ, Ripken D, et al. Ileal brake activation: macronutrient-specific effects on eating behavior? Int J Obes. 2015;39:235–243.CrossRefGoogle Scholar
  9. 9.
    Sanders KM, Kito Y, Hwang SJ, et al. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology. 2016;31:316–326.CrossRefGoogle Scholar
  10. 10.
    Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.CrossRefGoogle Scholar
  11. 11.
    Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut. 2014;63:179–190.CrossRefGoogle Scholar
  12. 12.
    Jameson KG, Hsiao EY. Linking the gut microbiota to a brain neurotransmitter. Trends Neurosci. 2018;41:413–414.CrossRefGoogle Scholar
  13. 13.
    Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133.CrossRefGoogle Scholar
  14. 14.
    Farmer AD, Aziz Q. Mechanisms of visceral pain in health and functional gastrointestinal disorders. Scand J Pain. 2017;5:51–60.CrossRefGoogle Scholar
  15. 15.
    Agustí A, García-Pardo MP, López-Almela I, et al. Interplay between the gut-brain axis, obesity and cognitive function. Front Neurosci. 2018;12:155.CrossRefGoogle Scholar
  16. 16.
    Ward SM, Sanders KM. Interstitial cells of Cajal: primary targets of enteric motor innervation. Anat Rec. 2001;262:125–135.CrossRefGoogle Scholar
  17. 17.
    Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–343.CrossRefGoogle Scholar
  18. 18.
    Christensen J, Schedl HP, Clifton JA. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with variety of diseases. Gastroenterology. 1966;50:309–315.PubMedGoogle Scholar
  19. 19.
    Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal in human gut and gastrointestinal disease. Microsc Res Tech. 1999;47:344–360.CrossRefGoogle Scholar
  20. 20.
    Zhou J, O’Connor MD, Ho V. The potential for gut organoid derived interstitial cells of Cajal in replacement therapy. Int J Mol Sci. 2017;18:2059.CrossRefGoogle Scholar
  21. 21.
    Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol. 1899;24:99–143.CrossRefGoogle Scholar
  22. 22.
    Greenwood-Van Meerveld B. Gastrointestinal pharmacology. New York, NY: Springer; 2017.CrossRefGoogle Scholar
  23. 23.
    Sarna SK. Cyclic motor activity; migrating motor complex: 1985. Gastroenterology. 1985;89:894–913.CrossRefGoogle Scholar
  24. 24.
    Boivin M, Bradette M, Raymond MC, et al. Mechanisms for postprandial release of motilin in humans. Dig Dis Sci. 1992;37:1562–1568.CrossRefGoogle Scholar
  25. 25.
    Kondo Y, Torii K, Itoh Z, et al. Erythromycin and its derivatives with motilin-like biological activities inhibit the specific binding of 125I-motilin to duodenal muscle. Biochem Biophys Res Commun. 1988;150:877–882.CrossRefGoogle Scholar
  26. 26.
    Peeters T, Matthijs G, Depoortere I, et al. Erythromycin is a motilin receptor agonist. Am J Physiol. 1989;257:G470–G474.CrossRefGoogle Scholar
  27. 27.
    Deloose E, Janssen P, Depoortere I, et al. The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol. 2012;9:271–285.CrossRefGoogle Scholar
  28. 28.
    Vantrappen G, Janssens J, Hellemans J, et al. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest. 1977;59:1158–1166.CrossRefGoogle Scholar
  29. 29.
    Bassotti G, Germani U, Morelli A. Human colonic motility: physiological aspects. Int J Colorectal Dis. 1995;10:173–180.CrossRefGoogle Scholar
  30. 30.
    Hiroz P, Schlageter V, Givel JC, et al. Colonic movements in healthy subjects as monitored by a Magnet Tracking System. Neurogastroenterol Motil. 2009;21:838-e57.CrossRefGoogle Scholar
  31. 31.
    Dinning PG, Wiklendt L, Gibbins I, et al. Low-resolution colonic manometry leads to a gross misinterpretation of the frequency and polarity of propagating sequences: initial results from fiber-optic high-resolution manometry studies. Neurogastroenterol Motil. 2013;25:e640–e649.PubMedGoogle Scholar
  32. 32.
    Garcia D, Hita G, Mompean B, et al. Colonic motility: electric and manometric description of mass movement. Dis Colon Rectum. 1991;34:577–584.CrossRefGoogle Scholar
  33. 33.
    Hagger R, Kumar D, Benson M, et al. Periodic colonic motor activity identified by 24-h pancolonic ambulatory manometry in humans. Neurogastroenterol Motil. 2002;14:271–278.CrossRefGoogle Scholar
  34. 34.
    Narducci F, Bassotti G, Gaburri M, et al. Twenty four hour manometric recording of colonic motor activity in healthy man. Gut. 1987;28:17–25.CrossRefGoogle Scholar
  35. 35.
    Bassotti G, Betti C, Fusaro C, Morelli A. Colonic high-amplitude propagated contractions (mass movements): repeated 24-h manometric studies in healthy volunteers. Neurogastroenterol Motil. 1992;4:187–191.CrossRefGoogle Scholar
  36. 36.
    Bassotti G, Chiarioni G, Germani U, et al. Endoluminal instillation of bisacodyl in patients with severe (slow transit type) constipation is useful to test residual colonic propulsive activity. Digestion. 1999;60:69–73.CrossRefGoogle Scholar
  37. 37.
    Hervé S, Savoye G, Behbahani A, et al. Results of 24-h manometric recording of colonic motor activity with endoluminal instillation of bisacodyl in patients with severe chronic slow transit constipation. Neurogastroenterol Motil. 2004;16:397–402.CrossRefGoogle Scholar
  38. 38.
    Chey WY, Jin HO, Lee MH, et al. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol. 2001;96:1499–1506.CrossRefGoogle Scholar
  39. 39.
    Kumar D, Thompson PD, Wingate DL. Absence of synchrony between human small intestinal migrating motor complex and rectal motor complex. Am J Physiol. 1990;258:G171–G172.CrossRefGoogle Scholar
  40. 40.
    Herve S, Savoye G, Behbahani A, et al. Results of 24-h manometric recording of colonic motor activity with endoluminal instillation of bisacodyl in patients with severe chronic slow transit constipation. Neurogastroenterol Motil. 2004;16:397–402.CrossRefGoogle Scholar
  41. 41.
    Rao SS, Welcher K. Periodic rectal motor activity: the intrinsic colonic gatekeeper? Am J Gastroenterol. 1996;91:890–897.PubMedGoogle Scholar
  42. 42.
    Schiller C, Fröhlich CP, Giessmann T, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–979.CrossRefGoogle Scholar
  43. 43.
    Di Stefano M, Miceli E, Missanelli A, et al. Meal induced rectosigmoid tone modification: a low caloric meal accurately separates functional and organic gastrointestinal disease patients. Gut. 2006;55:1409–1414.CrossRefGoogle Scholar
  44. 44.
    Milla PJ. Advances in understanding colonic function. J Pediatr Gastroenterol Nutr. 2009;48:S43–S45.CrossRefGoogle Scholar
  45. 45.
    Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414.CrossRefGoogle Scholar
  46. 46.
    Chial HJ, Camilleri M, Burton D, et al. Selective effects of serotonergic psychoactive agents on gastrointestinal functions in health. Am J Physiol Gastrointest Liver Physiol. 2003;284:G130–G137.CrossRefGoogle Scholar
  47. 47.
    Tack J, Broekaert D, Corsetti M, et al. Influence of acute serotonin reuptake inhibition on colonic sensorimotor function in man. Aliment Pharmacol Ther. 2006;23:265–274.CrossRefGoogle Scholar
  48. 48.
    Quigley EM. Prucalopride: safety, efficacy and potential applications. Therap Adv Gastroenterol. 2012;5:23–30.CrossRefGoogle Scholar
  49. 49.
    Camilleri M. Pharmacology and clinical experience with alosetron. Expert Opin Investig Drugs. 2000;9:147–159.CrossRefGoogle Scholar
  50. 50.
    Guidance for Industry Irritable Bowel Syndrome—Clinical Evaluation of Drugs for Treatment. 2012. https://www.fda.gov/downloads/Drugs/Guidances/UCM205269.pdf. Accessed July 4, 2018.
  51. 51.
    Cuppoletti J, Malinowska DH, Tewari KP, et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol. 2004;287:C1173–C1183.CrossRefGoogle Scholar
  52. 52.
    Sarosiek I, Bashashati M, Alvarez A, et al. Lubiprostone accelerates intestinal transit and alleviates small intestinal bacterial overgrowth in patients with chronic constipation. Am J Med Sci. 2016;352:231–238.CrossRefGoogle Scholar
  53. 53.
    Busby RW, Kessler MM, Bartolini WP, et al. Pharmacologic properties, metabolism, and disposition of linaclotide, a novel therapeutic peptide approved for the treatment of irritable bowel syndrome with constipation and chronic idiopathic constipation. J Pharmacol Exp Ther. 2013;344:196–206.CrossRefGoogle Scholar
  54. 54.
    Andresen V, Camilleri M, Busciglio IA, et al. Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. Gastroenterology. 2007;133:761–768.CrossRefGoogle Scholar
  55. 55.
    Swell L, Gustafsson J, Schwartz CC, et al. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man. J Lipid Res. 1980;21:455–466.PubMedGoogle Scholar
  56. 56.
    Barkun AN, Love J, Gould M, et al. Bile acid malabsorption in chronic diarrhea: pathophysiology and treatment. Can J Gastroenterol. 2013;27:653–659.CrossRefGoogle Scholar
  57. 57.
    Mekjian HS, Phillips SF, Hofmann AF. Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J Clin Invest. 1971;50:1569–1577.CrossRefGoogle Scholar
  58. 58.
    Camilleri M. Bile Acid diarrhea: prevalence, pathogenesis, and therapy. Gut Liver. 2015;9:332–339.CrossRefGoogle Scholar
  59. 59.
    Odunsi-Shiyanbade ST, Camilleri M, McKinzie S, et al. Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function. Clin Gastroenterol Hepatol. 2010;8:159–165.CrossRefGoogle Scholar
  60. 60.
    Manchikanti L, Singh A. Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids. Pain Phys. 2008;11:S63–S88.Google Scholar
  61. 61.
    Camilleri M. Opioid-induced constipation: challenges and therapeutic opportunities. Am J Gastroenterol. 2011;106:835–842.CrossRefGoogle Scholar
  62. 62.
    Stefano GB, Goumon Y, Casares F, et al. Endogenous morphine. Trends Neurosci. 2000;23:436–442.CrossRefGoogle Scholar
  63. 63.
    Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs. 2003;63:649–671.CrossRefGoogle Scholar
  64. 64.
    Lacy BE, Chey WD, Cash BD, et al. Eluxadoline efficacy in IBS-D patients who report prior loperamide use. Am J Gastroenterol. 2017;112:924–932.CrossRefGoogle Scholar
  65. 65.
    Wade PR, Palmer JM, McKenney S, et al. Modulation of gastrointestinal function by MuDelta, a mixed µ opioid receptor agonist/µ opioid receptor antagonist. Br J Pharmacol. 2012;167:1111–1125.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of GastroenterologyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Division of Gastroenterology, 111NHunter Holmes McGuire Veterans Affairs Medical CenterRichmondUSA

Personalised recommendations