Digestive Diseases and Sciences

, Volume 62, Issue 7, pp 1751–1761 | Cite as

Novel and Experimental Therapies in Chronic Pancreatitis

  • Soumya Jagannath
  • Pramod Kumar GargEmail author


Chronic pancreatitis (CP) is a progressive inflammatory disease of the pancreas. The currently available treatment of CP is aimed at controlling symptoms and managing complications. Unfortunately, no specific treatment is available to halt the progression of the disease process because the pathophysiological perturbations in CP are not well understood. In this review, we discuss various therapeutic targets and investigational agents acting on these targets. Among these, therapies modulating immune cells and those acting on pancreatic stellate cells appear promising and may translate into clinical benefit in near future. However, these experimental therapies are mostly in animal models and they do not recapitulate all aspects of human disease. Still they may be beneficial in developing effective therapeutic modalities to curb inflammation in chronic pancreatitis.


Chronic pancreatitis Pancreatic stellate cells Immune system Experimental therapy 



The authors acknowledge that the figures of the article were assisted by Mr. Sanjay Saini, who is not employed by any corporate agency.

Compliance with ethical standards

Conflict of interest

The authors disclose no conflict of interest.


  1. 1.
    Whitcomb DC, Frulloni L, Garg P, Greer JB, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–224.CrossRefPubMedGoogle Scholar
  2. 2.
    The Copenhagen Pancreatic Study Group. An interim report from a prospective epidemiological multicentre study. Scand J Gastroenterol. 1981;16:305–312.CrossRefGoogle Scholar
  3. 3.
    Robles-Diaz G, Vargas F, Uscanga L, Fernandez-del Castillo C. Chronic pancreatitis in Mexico City. Pancreas. 1990;5:479–483.CrossRefPubMedGoogle Scholar
  4. 4.
    Garg PK, Tandon RK. Survey on chronic pancreatitis in the Asia-Pacific region. J Gastroenterol Hepatol. 2004;19:998–1004.CrossRefPubMedGoogle Scholar
  5. 5.
    Lin Y, Tamakoshi A, Matsuno S, Takeda K, et al. Nationwide epidemiological survey of chronic pancreatitis in Japan. J Gastroenterol. 2000;35:136–141.CrossRefPubMedGoogle Scholar
  6. 6.
    Balaji LN, Tandon RK, Tandon BN, Banks A. Prevalence and clinical features of chronic pancreatitis in southern India. Int J Pancreatol. 1994;15:29–34.PubMedGoogle Scholar
  7. 7.
    Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2001;120:682–707.CrossRefPubMedGoogle Scholar
  8. 8.
    Tandon RK, Sato N, Garg PK. Chronic pancreatitis: Asia-Pacific consensus report. J Gastroenterol Hepatol. 2002;17:508–518.CrossRefPubMedGoogle Scholar
  9. 9.
    Rösch T, Daniel S, Scholz M, Huibregtse K, European Society of Gastrointestinal Endoscopy Research Group. Endoscopic treatment of chronic pancreatitis: a multicenter study of 1000 patients with long-term follow-up. Endoscopy. 2002;34:765–771.CrossRefPubMedGoogle Scholar
  10. 10.
    Cahen DL, Gouma DJ, Nio Y, Rauws EJ, et al. Endoscopic versus surgical drainage of the pancreatic duct in chronic pancreatitis. N Engl J Med. 2007;356:676–684.CrossRefPubMedGoogle Scholar
  11. 11.
    Xue J, Sharma V, Habtezion A. Immune cells and immune-based therapy in pancreatitis. Immunol Res. 2014;58:378–386.CrossRefPubMedGoogle Scholar
  12. 12.
    Zimnoch L, Szynaka B, Puchalski Z. Mast cells and pancreatic stellate cells in chronic pancreatitis with differently intensified fibrosis. Hepatogastroenterology. 2002;49:1135–1138.PubMedGoogle Scholar
  13. 13.
    Schmitz-Winnenthal H, Pietsch DH, Schimmack S, Bonertz A, et al. Chronic pancreatitis is associated with disease-specific regulatory T-cell responses. Gastroenterology. 2010;138:1178–1188.CrossRefPubMedGoogle Scholar
  14. 14.
    Grundsten M, Liu GZ, Permert J, Hjeilmstrom P, Tsai JA. Increased central memory T cells in patients with chronic pancreatitis. Pancreatology. 2005;5:177–182.CrossRefPubMedGoogle Scholar
  15. 15.
    Marrache F, Pendyala S, Bhagal G, Betz KS, Song Z, Wang TC. Role of bone marrow derived cells in experimental chronic pancreatitis. Gut. 2008;57:1113–1120.CrossRefPubMedGoogle Scholar
  16. 16.
    Lardon J, Rooman I, Bouwens L. Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol. 2002;117:535–540.CrossRefPubMedGoogle Scholar
  17. 17.
    Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest. 2007;117:50–59.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xue J, Sharma V, Hsieh MH, Chawla M, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature communications. 2015;6:7158.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Baumert J-T, Sparmann G, Emmrich J, Stefan L, Jaster R. Inhibitory effect of interferons on pancreatic stellate cell activation. World J Gastroenterol. 2006;12:896–901.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhao HF, Ito T, Gibo J, Kawabe K, et al. Anti-monocyte chemoattractant protein 1 gene therapy attenuates experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Gut. 2005;54:1759–1767.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Su SB, Xie MJ, Sawabu N, Motoo Y. Supressive effect of herbal medicine Saiko-Keishi-to on acinar cell apoptosis in rat spontaneous chronic pancreatitis. Pancreotology. 2007;7:28–36.CrossRefGoogle Scholar
  22. 22.
    Su SB, Motoo Y, Xie MJ, Taga H, Sawabu N. Antifibrotic effect of herbal medicine Saiko-Keishi-to (TJ-10) on chronic pancreatitis in the WBN/KOB rat. Pancreas. 2001;22:8–17.CrossRefPubMedGoogle Scholar
  23. 23.
    Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K, Shimosewaga T. Curcumin blocks activation of pancreatic stellate cells. J Cell Biochem. 2006;95:1080–1093.CrossRefGoogle Scholar
  24. 24.
    Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Invest. 2011;91:872–884.CrossRefPubMedGoogle Scholar
  25. 25.
    Jaster R, Brock P, Sparmann G, Emmrich J, Liebe S. Inhibition of pancreatic stellate cell activation by the hydroxymethylglutaryl coenzyme A reductase inhibitor Lovastatin. Biochem Pharmacol. 2003;65:1295–1303.CrossRefPubMedGoogle Scholar
  26. 26.
    Lin WR, Yen TH, Lim SN, Perng MD, et al. Granulocyte colony-stimulating factor reduces fibrosis in a mouse model of chronic pancreatitis. PLoS ONE. 2014;9:e116229. doi: 10.1371/journal.pone.0116229.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kuno A, Yamada T, Masuda K, Ogawa K, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 2003;124:1010–1019.CrossRefPubMedGoogle Scholar
  28. 28.
    Skipworth JR, Nijmeijer RM, van Santvoort HC, Besselink MG, et al. The effect of renin angiotensin system genetic variants in acute pancreatitis. Ann Surg. 2015;261:180–188.CrossRefPubMedGoogle Scholar
  29. 29.
    Madro A, Kurzepa J, Celinski K, Slomka M, et al. Effects of renin-angiotensin system inhibitors on fibrosis in patients with alcoholic chronic pancreatitis. J Physiol Pharmacol. 2016;67:103–110.PubMedGoogle Scholar
  30. 30.
    Tamura Y, Hirado M, Okamura K, Minato Y, Fujii S. Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r, and C1 esterase. Biochim Biophys Acta Enzymol. 1977;484:417–422.CrossRefGoogle Scholar
  31. 31.
    Gibo J, Ito T, Kawabe K, Hisano T, et al. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab Inv. 2005;85:75–89. CrossRefGoogle Scholar
  32. 32.
    Otsuki M, Okhi A, Okabayashi Y, Suehiro I, Baba S. Effect of synthetic protease inhibitor camostat on pancreatic exocrine function in rats. Pancreas. 1987;2:164–169.CrossRefPubMedGoogle Scholar
  33. 33.
    Kisfalvi K, Papp M, Friess H, Buchler M, Goracz UG. Beneficial effects of oral administration of camostat on cerulein-induced pancreatitis in rats. Dig Dis Sci. 1995;40:546–547.CrossRefPubMedGoogle Scholar
  34. 34.
    Ito T, Otsuki M, Itoi T, Shimosegawa T, et al. Pancreatic diabetes in a follow-up survey of chronic pancreatitis in Japan. J Gastroenterol. 2007;42:291–297.CrossRefPubMedGoogle Scholar
  35. 35.
    Jaster R, Hilgendorf I, Fitzner B, Brock P, et al. Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-trans retinoic acid. Biochem Pharmacol. 2003;66:633–641.CrossRefPubMedGoogle Scholar
  36. 36.
    Li XC, Lu XL, Chen HH. α-Tocopherol treatment ameliorates chronic pancreatitis in an experimental rat model induced by trinitrobenzene sulfonic acid. Pancreatology. 2011;11:5–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Yoo BM, Oh TY, Kim YB, Yeo Y, et al. Novel antioxidant ameliorates the fibrosis and inflammation of cerulein-induced chronic pancreatitis in a mouse model. Pancreatology. 2005;5:165–176.CrossRefPubMedGoogle Scholar
  38. 38.
    Mrazek AA, Porro LJ, Bhatia V, Falzon M, et al. Apigenin inhibits pancreatic stellate cell activity in pancreatitis. J Surg Res. 2015;196:8–16.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Suzuki N, Masamune A, Kikuta K, Watanabe T, Satoh K, Shimosegawa K. Ellagic acid inhibits pancreatic fibrosis in male Wistar Bonn/Kobori rats. Dig Dis Sci. 2009;54:802–810.CrossRefPubMedGoogle Scholar
  40. 40.
    Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosewaga T. Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J Gastroenterol. 2005;11:3368–3374.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Asaumi H, Wantabe S, Taguchi M, et al. Green tea polyphenol (-) -epigallocatechin-3-gallate inhibits ethanol induced activation of pancreatic stellate cells. Eur J Clin Invest. 2006;36:113–122.CrossRefPubMedGoogle Scholar
  42. 42.
    Jaster R, Sparmann G, Emmrich J, Liebe S. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut. 2002;51:579–584.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lin Z, Zheng LC, Zhang HZ, Tsang SW, Bian ZX. Antifibrotic effects of phenolic compounds on pancreatic stellate cells. BMC Complement Altern Med. 2015;15:259.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zion O, Genin O, Kawada N, Yoshizato K, et al. Inhibition of transforming growth factor beta signaling by halofuginone as a modality for pancreas fibrosis prevention. Pancreas. 2009;38:427–435.CrossRefPubMedGoogle Scholar
  45. 45.
    Niina Y, Ito T, Oono T, Nakamura T, Fujimori N, et al. A sustained prostacyclin analog, ONO-1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology. 2014;14:201–210.CrossRefPubMedGoogle Scholar
  46. 46.
    Reding T, Bimler D, Perren A, Sun LK, et al. A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (WBN/Kob rats): significant reduction of macrophage infiltration and fibrosis. Gut. 2006;55:1165–1173.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Inv. 2011;91:872–884.CrossRefGoogle Scholar
  48. 48.
    Zhou CH, Lin-Li, Zhu XY, Wen-Tang, et al. Protective effects of edaravone on experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology. 2013;13:125–132.CrossRefPubMedGoogle Scholar
  49. 49.
    Yang T, Liang Y, Lin Q, Liu J, et al. miR-29 mediates TGF β1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem. 2013;114:1336–1342.CrossRefPubMedGoogle Scholar
  50. 50.
    Xiong M, Jiang L, Zhou Y, Qiu W, et al. The miR- 200 family regulates TGF-b1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302:F369–F379.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhu H, Luo H, Li Y, Zhou Y, et al. MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol. 2013;33:1100–1109.CrossRefPubMedGoogle Scholar
  52. 52.
    Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a micro RNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301:F793–F801.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chan LK, Gerstenlauer M, Konukiewitz B, Steiger K, et al. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis. Gut 2016. doi: 10.1136/gutjnl-2015-311028.
  54. 54.
    Midha S, Hasan A, Dhingra R, Garg PK. Long-term pain relief with optimized medical including antioxidants and step-up interventional therapy in patients with chronic pancreatitis. J Gastroenterol Hepatol. 2016;32:270–277. doi: 10.1111/jgh.13410.Google Scholar
  55. 55.
    Garg PK. Antioxidants for chronic pancreatitis: reasons for disappointing results despite sound principles. Gastroenterology. 2013;144:e19–e20.CrossRefPubMedGoogle Scholar
  56. 56.
    Tang Y, Laio Y, Kawaguchi-Sakita N, Raut V, et al. Sinisan, a traditional Chinese medicine, attenuates experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid in rats. J Hepatobiliary Pancreat Sci. 2011;18:551–558.CrossRefPubMedGoogle Scholar
  57. 57.
    Shiratori K, Takeuchi T, Satake K, Matsuno S. Clinical evaluation of oral administration of a cholecystokinin A receptor antagonist (loxiglumide) to patients with acute, painful attacks of chronic pancreatitis: a multicenter dose response study in Japan. Pancreas. 2002;25:e15.CrossRefGoogle Scholar
  58. 58.
    Levenick JM, Andrews CL, Purich ED, Gordon SR, Gardner TB. A phase II trial of human secretin infusion for refractory type B pain in chronic pancreatitis. Pancreas. 2013;42:596–600.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang L, Kline RH, McNearney TA, Johnson MP, Westlund KN. Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis. Mol Pain. 2014;10:66.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang Y, Li Y, Wang L, Kang Y, et al. Tanshinone IIA attenuates chronic pancreatitis- induced pain in rats via downregulation of HMGB1 and TRL4 expression in the spinal cord. Pain Phys. 2015;18:E615–E628.Google Scholar
  61. 61.
    Ceppa E, Cattaruzza F, Lyo V, Amadesi S, et al. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol. 2010;299:G556–G571.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhang LP, Ma F, Abshire SM, Westlund KN. Prolonged high fat/alcohol exposure increases TRPV4 and its functional responses in pancreatic stellate cells. Am J Physiol Regul Integr Comp Physiol. 2013;304:R702–R711.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhang LP, Kline RH, Deevska IG, Ma F, et al. Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist reduces hypersensitivity. Neuroscience. 2015;311:166–179.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kapural L, Cywinski JB, Sparks DA. Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation. 2011;14:423–427.CrossRefPubMedGoogle Scholar
  65. 65.
    Midha S, Khajuria R, Shastri S, Kabra M, Garg PK. Idiopathic chronic pancreatitis in India: phenotypic characterization and strong genetic susceptibility due to SPINK1 and CFTR gene mutations. Gut. 2010;59:800–807.CrossRefPubMedGoogle Scholar
  66. 66.
    Van Goor F, Hadida S, Grootenhuis PD, Burton B, et al. Correction of the F508delCFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA. 2011;108:18843–18848.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jih KY, Hwang TC. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci USA. 2013;110:4404–4409.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hayes D Jr, McCoy KS, Sheikh SI. Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am J Respir Crit Care Med. 2014;190:590–591.CrossRefPubMedGoogle Scholar
  69. 69.
    Bellin MD, Laguna T, Leschyshyn J, Regelmann W, et al. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: a small pilot study. Pediatr Diabetes. 2013;14:417–421.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.CrossRefPubMedGoogle Scholar
  71. 71.
    Alton EW, Armstrong DK, Ashby D, Bayfield KJ, et al. UK Cystic Fibrosis Gene Therapy Consortium. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebocontrolled, phase 2b trial. Lancet Respir Med. 2015;3:684–691.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Zhou CH, Li ML, Qin AL, Lv SX, et al. Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas. 2013;42:1291–1302.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations