Digestive Diseases and Sciences

, Volume 62, Issue 2, pp 396–406 | Cite as

Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models

  • Mitsuaki Ishioka
  • Kouichi Miura
  • Shinichiro Minami
  • Yoichiro Shimura
  • Hirohide Ohnishi
Original Article

Abstract

Background

Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed.

Aim

We attempted to clarify the difference in the gut environment between mice administrated several experimental diets.

Methods

Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator.

Results

Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17.

Conclusions

The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.

Keywords

Nonalcoholic fatty liver disease Nonalcoholic steatohepatitis Gut microbiota IL-17 Gut–liver axis 

Abbreviations

ALT

Alanine transaminase

CDAA

Choline-deficient amino acid-defined

F/B

Firmicutes/Bacteroidetes

HF

High-fat

H&E

Hematoxylin and eosin

IL

Interleukin

MCD

Methionine-choline-deficient

NAFLD

Nonalcoholic fatty liver disease

NASH

Nonalcoholic steatohepatitis

NC

Normal chow

SCFAs

Short-chain fatty acids

TLR

Toll-like receptor

Notes

Acknowledgments

We thank Daichi Nakagawa for excellent technical assistance and the Biotechnology Center, Faculty of Bioresource Sciences, Akita Prefectural University, for assistance with the GS Junior instrument for pyrosequencing analyses.

Funding

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (K.M.).

Compliance with ethical standards

Conflict of interest

All authors have no conflicts to disclose.

Supplementary material

10620_2016_4393_MOESM1_ESM.tiff (2.9 mb)
Supplemental Figure 1 Composition of gut microbiota examined by the GS Junior system. The relative abundance of gut microbiota is shown for HF, CDAA, and MCD diets, compared with the NC group. First, the percentage of the gut microbiota was calculated in the total count reads (NC: 10,829, HF: 13,374, CDAA: 26,009, MCD: 22,601 reads). Red indicates increased abundance, while green indicates decreased abundance, compared with the NC group. The composition of the gut microbiota is shown at phylum, order, genus, and species level. (A) Composition of gut microbiota in phylum Firmicutes. “C” indicates Clostridium. (B) Composition of gut microbiota in phylum Bacteroidetes. “B” and “P” indicate Bacteroides and Parabacteroides, respectively. (C) Composition of gut microbiota in phylum Proteobacteria. “D” and “H” indicate Desulfovibrio and Helicobacter, respectively. (TIFF 2927 kb)
10620_2016_4393_MOESM2_ESM.tiff (2.9 mb)
Supplementary material 2 (TIFF 2927 kb)
10620_2016_4393_MOESM3_ESM.tiff (2.9 mb)
Supplementary material 3 (TIFF 2927 kb)
10620_2016_4393_MOESM4_ESM.tiff (2.9 mb)
Supplementary material 4 (TIFF 2927 kb)

References

  1. 1.
    Okanoue T, Umemura A, Yasui K, et al. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. J Gastroenterol Hepatol. 2011;1:153–162.CrossRefGoogle Scholar
  2. 2.
    Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–127.CrossRefPubMedGoogle Scholar
  3. 3.
    Miura K, Ohnishi H. Role of gut microbiota and toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:7381–7391.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920.CrossRefPubMedGoogle Scholar
  5. 5.
    Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023.CrossRefPubMedGoogle Scholar
  6. 6.
    Mathur R, Barlow GM. Obesity and the microbiome. Expert Rev Gastroenterol Hepatol. 2015;9:1087–1099.CrossRefPubMedGoogle Scholar
  7. 7.
    Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:806248.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Huang Y, Fan XG, Wang ZM, et al. Identification of helicobacter species in human liver samples from patients with primary hepatocellular carcinoma. J Clin Pathol. 2004;57:1273–1277.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ferolla SM, Armiliato GN, Couto CA, et al. The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease. Nutrients. 2014;6:5583–5599.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–609.CrossRefPubMedGoogle Scholar
  11. 11.
    Okubo H, Sakoda H, Kushiyama A, et al. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model. Am J Physiol Gastrointest Liver Physiol. 2013;305:G911–G918.CrossRefPubMedGoogle Scholar
  12. 12.
    Naito E, Yoshida Y, Makino K, et al. Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. J Appl Microbiol. 2011;110:650–657.CrossRefPubMedGoogle Scholar
  13. 13.
    Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–349.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tang Y, Bian Z, Zhao L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in nonalcoholic fatty liver disease. Clin Exp Immunol. 2011;166:281–290.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ibrahim SH, Hirsova P, Malhi H, et al. Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame. Dig Dis Sci. 2016;61:1325–1336.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45:1366–1374.CrossRefPubMedGoogle Scholar
  17. 17.
    Hebbard L, George J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2011;8:35–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007;37:50–57.CrossRefPubMedGoogle Scholar
  19. 19.
    Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:e7.CrossRefGoogle Scholar
  20. 20.
    Miura K, Ishioka M, Minami S, et al. Toll-like receptor 4 on macrophage promotes the development of steatohepatitis-related hepatocellular carcinoma in mice. J Biol Chem. 2016;27:11504–11517.CrossRefGoogle Scholar
  21. 21.
    Brunt EM, Kleiner DE, Wilson LA, et al. NASH clinical research network (CRN). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53:810–820.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loman NJ, Misra RV, Dallman TJ, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–439.CrossRefPubMedGoogle Scholar
  23. 23.
    Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol. 2012;78:717–725.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kitani H, Takenouchi T, Sato M, Yoshioka M, Yamanaka N. A simple and efficient method to isolate macrophages from mixed primary cultures of adult liver cells. J Vis Exp JoVE. 2011;e0000.Google Scholar
  25. 25.
    Petit E, LaTouf WG, Coppi MV, et al. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. PLoS ONE. 2013;8:e54337.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Collins MD, Lawson PA, Willems A, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994;44:812–826.CrossRefPubMedGoogle Scholar
  27. 27.
    Tuck LR, Altenbach K, Ang TF, et al. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans. Sci Rep. 2016;6:22108.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chang CJ, Lin CS, Lu CC, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Neyrinck AM, Etxeberria U, Taminiau B, et al. Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Mol Nutr Food Res. 2016. doi: 10.1002/mnfr.201500899.
  30. 30.
    Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54:562–572.CrossRefPubMedGoogle Scholar
  31. 31.
    Chinen T, Rudensky AY. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol Rev. 2012;245:45–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Lemmers A, Moreno C, Gustot T, et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009;49:646–657.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Chen L, Gao W, et al. IL-17 neutralization significantly ameliorates hepatic granulomatous inflammation and liver damage in Schistosoma japonicum infected mice. Eur J Immunol. 2012;42:1523–1535.CrossRefPubMedGoogle Scholar
  34. 34.
    Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr. 2011;31:15–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Sakamoto M. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006;56:1599–1605.CrossRefPubMedGoogle Scholar
  36. 36.
    Pfalzer AC, Nesbeth PD, Parnell LD, et al. Diet- and genetically-induced obesity differentially affect the fecal microbiome and metabolome in Apc1638N mice. PLoS ONE. 2015;10:e0135758.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kverka M, Zakostelska Z, Klimesova K, et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol. 2011;163:250–259.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Murphy EF, Cotter PD, Healy S, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635–1642.CrossRefPubMedGoogle Scholar
  39. 39.
    Segura-López FK, Güitrón-Cantú A, Torres J. Association between Helicobacter spp. infections and hepatobiliary malignancies: a review. World J Gastroenterol. 2015;21:1414–1423.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Goldstein EJ, Citron DM, Peraino VA, et al. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J Clin Microbiol. 2003;41:2752–2754.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Imajo K, Fujita K, Yoneda M, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16:44–54.CrossRefPubMedGoogle Scholar
  42. 42.
    D’Argenio V, Casaburi G, Precone V, Salvatore F. Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. BioMed Res Int. 2014;2014:1–10.CrossRefGoogle Scholar
  43. 43.
    Rolla S, Alchera E, Imarisio C, et al. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice. Clin Sci (Lond). 2016;130:193–203.CrossRefGoogle Scholar
  44. 44.
    Takahashi N, Vanlaere I, de Rycke R, et al. IL-17 produced by Paneth cells drives TNF-induced shock. J Exp Med. 2008;205:1755–1761.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Park SW, Kim M, Brown KM, et al. Paneth cell-derived interleukin-17A causes multiorgan dysfunction after hepatic ischemia and reperfusion injury. Hepatology. 2011;53:1662–1675.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013;2:e60.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Miura K, Yang L, van Rooijen N, et al. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1310–G1321.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gomes AC, Bueno AA, de Souza RG, et al. Gut microbiota, probiotics and diabetes. Nutr J. 2014;13:60.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Haileselassie Y, Johansson MA, Zimmer CL, et al. Lactobacilli regulate Staphylococcus aureus 161:2-induced pro-inflammatory T-cell responses in vitro. PLoS ONE. 2013;8:e77893.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Geem D, Medina-Contreras O, McBride M, et al. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431–438.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Harley IT, Stankiewicz TE, Giles DA, et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology. 2014;59:1830–1839.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mitsuaki Ishioka
    • 1
  • Kouichi Miura
    • 1
  • Shinichiro Minami
    • 1
  • Yoichiro Shimura
    • 2
  • Hirohide Ohnishi
    • 1
  1. 1.Department of GastroenterologyAkita University Graduate School of MedicineAkita-shiJapan
  2. 2.Department of Biotechnology, Faculty of Bioresource SciencesAkita Prefectural UniversityAkita-shiJapan

Personalised recommendations