Advertisement

Digestive Diseases and Sciences

, Volume 62, Issue 1, pp 115–123 | Cite as

Comparison of Adipose-Derived and Bone Marrow Mesenchymal Stromal Cells in a Murine Model of Crohn’s Disease

  • Minghao Xie
  • Huabo Qin
  • Qianxin Luo
  • Xiaosheng He
  • Xiaowen He
  • Ping Lan
  • Lei LianEmail author
Original Article

Abstract

Background

Mesenchymal stromal cells (MSCs) have been used in the treatment of Crohn’s disease (CD) because of the immunomodulatory ability.

Aim

The aim of this study was to investigate the therapeutic effect of adipose-derived MSCs (AD-MSCs) and to compare the therapeutic effect of AD-MSCs with that of bone marrow MSCs (BM-MSCs) in a murine model of CD.

Methods

Murine colitis model of CD was created by trinitrobenzene sulfonic acid (TNBS). Twelve hours after treatment with TNBS, the mouse model was injected with MSCs intraperitoneally. Real-time polymerase chain reaction and immunohistochemistry staining were used to measure the expression levels of inflammatory cytokines in colonic tissues to investigate the therapeutic effect of AD-MSCs. The ten-day survival was recorded after infusion of MSCs.

Results

Intraperitoneal injection of MSCs alleviated the clinical and histopathologic severity of intestinal inflammation, and improved the survival of the TNBS-induced mouse model of CD. AD-MSCs could effectively increase the expression of interleukin-10 and reduce the secretion of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-12, and vascular endothelial growth factor. The mucosal injury was repaired by AD-MSCs. These effects were comparable between AD-MSCs and BM-MSCs.

Conclusions

The therapeutic effect appears similar between AD-MSCs and BM-MSCs in treating CD. AD-MSCs may be a potential alternative of cell-based therapy for CD.

Keywords

Mesenchymal stromal cells (MSCs) Crohn’s disease (CD) Therapeutic effects Intraperitoneal injection 

Notes

Acknowledgments

This study is supported by Guangdong Provincial Scientific Technology Foundation (#B2012149), National Natural Science Foundation of China (#81200332, #81300367, and #81570596), Pearl River S&T Nova Program of Guangzhou (#2014J2200040), Science and Technology Planning Project of Guangdong Province (#2015B020229001), and the Fundamental Research Funds for the Central Universities (#15ykjc06e).

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Crohn BB, Ginzburg L, Oppenheimer GD. Regional ileitis: a pathologic and clinical entity. 1932. Mt Sinai J Med. 2000;67:263–268.PubMedGoogle Scholar
  2. 2.
    Shaffer VO, Wexner SD. Surgical management of Crohn’s disease. Langenbecks Arch Surg. 2013;398:13–27.CrossRefPubMedGoogle Scholar
  3. 3.
    Rutgeerts P, Geboes K, Vantrappen G, Beyls J, Kerremans R, Hiele M. Predictability of the postoperative course of Crohn’s disease. Gastroenterology. 1990;99:956–963.CrossRefPubMedGoogle Scholar
  4. 4.
    Fornaro R, Frascio M, Stabilini C, et al. Crohn’s disease surgery: problems of postoperative recurrence. Chir Ital. 2008;60:761–781.PubMedGoogle Scholar
  5. 5.
    Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521–533.CrossRefPubMedGoogle Scholar
  6. 6.
    Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429.CrossRefPubMedGoogle Scholar
  7. 7.
    Taupin P. OTI-010 osiris therapeutics/JCR pharmaceuticals. Curr Opin Investig Drugs. 2006;7:473–481.PubMedGoogle Scholar
  8. 8.
    Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60:788–798.CrossRefPubMedGoogle Scholar
  9. 9.
    Duijvestein M, Vos AC, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59:1662–1669.CrossRefPubMedGoogle Scholar
  10. 10.
    Galipeau J. The mesenchymal stromal cells dilemma–does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15:2–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–228.CrossRefPubMedGoogle Scholar
  12. 12.
    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–2749.CrossRefPubMedGoogle Scholar
  13. 13.
    Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–129.CrossRefPubMedGoogle Scholar
  14. 14.
    Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–2591.CrossRefPubMedGoogle Scholar
  15. 15.
    Bassi G, Pacelli L, Carusone R, Zanoncello J, Krampera M. Adipose-derived stromal cells (ASCs). Transfus Apher Sci. 2012;47:193–198.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14:311–324.CrossRefPubMedGoogle Scholar
  17. 17.
    De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–109.CrossRefPubMedGoogle Scholar
  18. 18.
    Garcia-Olmo D, Garcia-Arranz M, Garcia LG, et al. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int J Colorectal Dis. 2003;18:451–454.CrossRefPubMedGoogle Scholar
  19. 19.
    Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48:1416–1423.CrossRefPubMedGoogle Scholar
  20. 20.
    Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52:79–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–106.CrossRefPubMedGoogle Scholar
  22. 22.
    Sung JH, Yang HM, Park JB, et al. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc. 2008;40:2649–2654.CrossRefPubMedGoogle Scholar
  23. 23.
    Taha MF, Hedayati V. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell. 2010;42:211–216.CrossRefPubMedGoogle Scholar
  24. 24.
    Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395.CrossRefPubMedGoogle Scholar
  25. 25.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301.CrossRefPubMedGoogle Scholar
  26. 26.
    Penick KJ, Solchaga LA, Welter JF. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques. 2005;39:687–691.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Duijvestein M, Wildenberg ME, Welling MM, et al. Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells. 2011;29:1549–1558.CrossRefPubMedGoogle Scholar
  28. 28.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.CrossRefPubMedGoogle Scholar
  29. 29.
    Da SML, Sand TT, Harman RJ, Lennon DP, Caplan AI. MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A. 2009;15:221–229.CrossRefGoogle Scholar
  30. 30.
    Hoogduijn MJ, Betjes MG, Baan CC. Mesenchymal stromal cells for organ transplantation: different sources and unique characteristics? Curr Opin Organ Transplant. 2014;19:41–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee SY, Kim W, Lim C, Chung SG. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study. Stem Cells. 2015;33:2995–3005.CrossRefPubMedGoogle Scholar
  32. 32.
    Cho YB, Park KJ, Yoon SN, et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med. 2015;4:532–537.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Toyserkani NM, Christensen ML, Sheikh SP, Sorensen JA. Adipose-derived stem cells: new treatment for wound healing? Ann Plast Surg. 2015;75:117–123.CrossRefPubMedGoogle Scholar
  34. 34.
    Danisovic L, Varga I, Polak S, et al. Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys. 2009;28:56–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Elman JS, Li M, Wang F, Gimble JM, Parekkadan B. A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm (Lond). 2014;11:1.CrossRefGoogle Scholar
  36. 36.
    Ertas G, Ural E, Ural D, et al. Comparative analysis of apoptotic resistance of mesenchymal stem cells isolated from human bone marrow and adipose tissue. Sci World J. 2012;2012:105698.CrossRefGoogle Scholar
  37. 37.
    Rasmussen JG, Frobert O, Holst-Hansen C, et al. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplant. 2014;23:195–206.CrossRefPubMedGoogle Scholar
  38. 38.
    Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res. 2005;23:1383–1389.CrossRefPubMedGoogle Scholar
  39. 39.
    Napoli C, Williams-Ignarro S, de Nigris F, et al. Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb. Proc Natl Acad Sci USA. 2005;102:17202–17206.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rodrigo SF, van Ramshorst J, Hoogslag GE, et al. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Transl Res. 2013;6:816–825.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Exp Opin Biol Ther. 2008;8:569–581.CrossRefGoogle Scholar
  42. 42.
    Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136:978–989.CrossRefPubMedGoogle Scholar
  43. 43.
    Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58:929–939.CrossRefPubMedGoogle Scholar
  44. 44.
    Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.CrossRefPubMedGoogle Scholar
  45. 45.
    Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci. 2009;1176:101–117.CrossRefPubMedGoogle Scholar
  46. 46.
    Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–154.CrossRefPubMedGoogle Scholar
  48. 48.
    Ivanova-Todorova E, Bochev I, Mourdjeva M, et al. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett. 2009;126:37–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Minghao Xie
    • 1
    • 2
  • Huabo Qin
    • 1
    • 2
  • Qianxin Luo
    • 1
    • 2
  • Xiaosheng He
    • 1
    • 2
  • Xiaowen He
    • 1
    • 2
  • Ping Lan
    • 1
    • 2
  • Lei Lian
    • 1
    • 2
    Email author
  1. 1.Department of Colorectal Surgery, the Sixth Affiliated HospitalSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated HospitalSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations