Advertisement

Digestive Diseases and Sciences

, Volume 61, Issue 5, pp 1268–1281 | Cite as

Gut Microbiota of Nonalcoholic Fatty Liver Disease

  • Reham M. AbdouEmail author
  • Lixin Zhu
  • Robert D. Baker
  • Susan S. Baker
Review

Abstract

The prevalence of nonalcoholic fatty liver disease has been rapidly increasing worldwide. It has become a leading cause of liver transplantation. Accumulating evidence suggests a significant role for gut microbiota in its development and progression. Here we review the effect of gut microbiota on developing hepatic fatty infiltration and its progression. Current literature supports a possible role for gut microbiota in the development of liver steatosis, inflammation and fibrosis. We also review the literature on possible interventions for NAFLD that target the gut microbiota.

Keywords

NAFLD NASH Steatosis Inflammation Fibrosis Microbiota and intestinal permeability 

Notes

Acknowledgments

Work done in the authors’ laboratory is mainly supported by Grants from the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (U01 DK061728 to S.S.B.), the Peter and Tommy Fund, Inc., Buffalo, NY (to S.S.B. and L.Z.) and a departmental start-up fund (to L.Z.).

Compliance with ethical standards

Conflict of interest

None of the authors had any relevant personal or financial conflicts of interest.

References

  1. 1.
    Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113–121.PubMedCrossRefGoogle Scholar
  2. 2.
    Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–285.PubMedCrossRefGoogle Scholar
  3. 3.
    Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol. 2015;13:643–654. (e641–e649; quiz e639–e640).PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Welsh JA, Karpen S, Vos MB. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988–1994 to 2007–2010. J Pediatr. 2013;162:e491.Google Scholar
  5. 5.
    Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.PubMedCrossRefGoogle Scholar
  6. 6.
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Compare D, Coccoli P, Rocco A, et al. Gut–liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2012;22:471–476.PubMedCrossRefGoogle Scholar
  8. 8.
    Pereira SP, Rhodes JM, Campbell BJ, et al. Biliary lactoferrin concentrations are increased in active inflammatory bowel disease: a factor in the pathogenesis of primary sclerosing cholangitis? Clin Sci. 1998;95:637–644.PubMedCrossRefGoogle Scholar
  9. 9.
    Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–15723.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031.PubMedCrossRefGoogle Scholar
  11. 11.
    Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.PubMedCrossRefGoogle Scholar
  12. 12.
    Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhu L, Baker RD, Baker SS. Gut microbiome and nonalcoholic fatty liver diseases. Pediatr Res. 2015;77:245–251.PubMedCrossRefGoogle Scholar
  15. 15.
    Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546.PubMedCrossRefGoogle Scholar
  16. 16.
    Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588.PubMedCrossRefGoogle Scholar
  17. 17.
    Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.PubMedCrossRefGoogle Scholar
  18. 18.
    El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 2013;11:497–504.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu J, Bjursell MK, Himrod J, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. 2003;299:2074–2076.PubMedCrossRefGoogle Scholar
  20. 20.
    Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58:949–955.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88:894–899.PubMedGoogle Scholar
  22. 22.
    Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–195.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–609.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong VW, Tse CH, Lam TT, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study. PLoS One. 2013;8:e62885.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Blachier F, Mariotti F, Huneau JF, Tome D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007;33:547–562.PubMedCrossRefGoogle Scholar
  26. 26.
    Koruda MJ, Rolandelli RH, Bliss DZ, Hastings J, Rombeau JL, Settle RG. Parenteral nutrition supplemented with short-chain fatty acids: effect on the small-bowel mucosa in normal rats. Am J Clin Nutr. 1990;51:685–689.PubMedGoogle Scholar
  27. 27.
    Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats. Gastroenterology. 1997;112:792–802.PubMedCrossRefGoogle Scholar
  28. 28.
    McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39:338–342.PubMedGoogle Scholar
  29. 29.
    Bingham S, Cummings JH, McNeil NI. Intakes and sources of dietary fiber in the British population. Am J Clin Nutr. 1979;32:1313–1319.PubMedGoogle Scholar
  30. 30.
    Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–1064.PubMedGoogle Scholar
  31. 31.
    Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–243.PubMedCrossRefGoogle Scholar
  32. 32.
    Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980;21:793–798.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lin HV, Frassetto A, Kowalik EJ Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64:1744–1754.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–654.PubMedCrossRefGoogle Scholar
  36. 36.
    Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–948.PubMedCrossRefGoogle Scholar
  37. 37.
    de Wit N, Derrien M, Bosch-Vermeulen H, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303:G589–G599.PubMedCrossRefGoogle Scholar
  38. 38.
    Le Roy T, Llopis M, Lepage P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62:1787–1794.PubMedCrossRefGoogle Scholar
  39. 39.
    Vance DE. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol. 2008;19:229–234.PubMedCrossRefGoogle Scholar
  40. 40.
    Zeisel SH, DaCosta KA, Fox JG. Endogenous formation of dimethylamine. Biochem J. 1985;232:403–408.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zeisel SH, daCosta KA, LaMont JT. Mono-, di- and trimethylamine in human gastric fluid: potential substrates for nitrosodimethylamine formation. Carcinogenesis. 1988;9:179–181.PubMedCrossRefGoogle Scholar
  42. 42.
    Zeisel SH, daCosta KA, Youssef M, Hensey S. Conversion of dietary choline to trimethylamine and dimethylamine in rats: dose-response relationship. J Nutr. 1989;119:800–804.PubMedGoogle Scholar
  43. 43.
    Haggerty HG, Holsapple MP. Role of metabolism in dimethylnitrosamine-induced immunosuppression: a review. Toxicology. 1990;63:1–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA. 2006;103:12511–12516.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Buchman AL, Dubin MD, Moukarzel AA, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology. 1995;22:1399–1403.PubMedGoogle Scholar
  46. 46.
    Song J, da Costa KA, Fischer LM, et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005;19:1266–1271.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140:976–986.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Collison KS, Saleh SM, Bakheet RH, et al. Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55. Obesity. 2009;17:2003–2013.PubMedCrossRefGoogle Scholar
  49. 49.
    Tappy L, Le KA. Does fructose consumption contribute to non-alcoholic fatty liver disease? Clin Res Hepatol Gastroenterol. 2012;36:554–560.PubMedCrossRefGoogle Scholar
  50. 50.
    Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1961–1971.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cox CL, Stanhope KL, Schwarz JM, et al. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutr Metab (Lond). 2012;9:68.CrossRefGoogle Scholar
  52. 52.
    Lin WT, Huang HL, Huang MC, et al. Effects on uric acid, body mass index and blood pressure in adolescents of consuming beverages sweetened with high-fructose corn syrup. Int J Obes (Lond). 2013;37:532–539.CrossRefGoogle Scholar
  53. 53.
    Vos MB, Colvin R, Belt P, et al. Correlation of vitamin E, uric acid, and diet composition with histologic features of pediatric NAFLD. J Pediatr Gastroenterol Nutr. 2012;54:90–96.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126:789–799.PubMedCrossRefGoogle Scholar
  55. 55.
    Li Z, Kruijt JK, van der Sluis RJ, Van Berkel TJ, Hoekstra M. Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiol Genomics. 2013;45:268–275.PubMedCrossRefGoogle Scholar
  56. 56.
    Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis. 2010;28:220–224.PubMedCrossRefGoogle Scholar
  57. 57.
    Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–177.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Swann JR, Want EJ, Geier FM, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA. 2011;108:4523–4530.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487:104–108.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–9440.PubMedCrossRefGoogle Scholar
  61. 61.
    Fuchs M. Non-alcoholic Fatty liver disease: the bile Acid-activated farnesoid x receptor as an emerging treatment target. J Lipids. 2012;2012:934396.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11:55–67.PubMedCrossRefGoogle Scholar
  63. 63.
    Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.PubMedCrossRefGoogle Scholar
  64. 64.
    Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015;5:8096.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46:556–560.PubMedCrossRefGoogle Scholar
  66. 66.
    Dawes EA, Foster SM. The formation of ethanol in Escherichia coli. Biochim Biophys Acta. 1956;22:253–265.PubMedCrossRefGoogle Scholar
  67. 67.
    Paege LM, Gibbs M. Anaerobic dissimilation of glucose-C14 by Escherichia coli. J Bacteriol. 1961;81:107–110.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Brooks JB, Basta MT, el Kholy AM. Studies of metabolites in diarrheal stool specimens containing Shigella species by frequency-pulsed electron capture gas-liquid chromatography. J Clin Microbiol. 1985;21:599–606.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Michail S, Lin M, Frey MR, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015;91:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One. 2010;5:e9570.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Engstler AJ, Aumiller T, Degen C, et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut. 2015. doi: 10.1136/gutjnl-2014-308379.PubMedGoogle Scholar
  72. 72.
    Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology. 2000;119:1340–1347.PubMedCrossRefGoogle Scholar
  73. 73.
    Volynets V, Kuper MA, Strahl S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2012;57:1932–1941.PubMedCrossRefGoogle Scholar
  74. 74.
    Hartmann P, Chen WC, Schnabl B. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Front Physiol. 2012;3:402.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol. 2004;34:9–19.PubMedCrossRefGoogle Scholar
  76. 76.
    Keshavarzian A, Holmes EW, Patel M, Iber F, Fields JZ, Pethkar S. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol. 1999;94:200–207.PubMedCrossRefGoogle Scholar
  77. 77.
    Basuroy S, Sheth P, Mansbach CM, Rao RK. Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and l-glutamine. Am J Physiol Gastrointest Liver Physiol. 2005;289:G367–G375.PubMedCrossRefGoogle Scholar
  78. 78.
    Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008;87:1219–1223.PubMedGoogle Scholar
  79. 79.
    Laugerette F, Vors C, Geloen A, et al. Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem. 2011;22:53–59.PubMedCrossRefGoogle Scholar
  80. 80.
    Imajo K, Fujita K, Yoneda M, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16:44–54.PubMedCrossRefGoogle Scholar
  81. 81.
    Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.PubMedCrossRefGoogle Scholar
  82. 82.
    Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–185.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156:1045–1059.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ruiz AG, Casafont F, Crespo J, et al. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg. 2007;17:1374–1380.PubMedCrossRefGoogle Scholar
  85. 85.
    Harte AL, da Silva NF, Creely SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm. 2010;7:15.CrossRefGoogle Scholar
  86. 86.
    Verdam FJ, Rensen SS, Driessen A, Greve JW, Buurman WA. Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J Clin Gastroenterol. 2011;45:149–152.PubMedCrossRefGoogle Scholar
  87. 87.
    Thuy S, Ladurner R, Volynets V, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008;138:1452–1455.PubMedGoogle Scholar
  88. 88.
    Yuan J, Baker SS, Liu W, et al. Endotoxemia unrequired in the pathogenesis of pediatric nonalcoholic steatohepatitis. J Gastroenterol Hepatol. 2014;29:1292–1298.PubMedCrossRefGoogle Scholar
  89. 89.
    Alisi A, Manco M, Devito R, Piemonte F, Nobili V. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr. 2010;50:645–649.PubMedCrossRefGoogle Scholar
  90. 90.
    Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704–720.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–1332.PubMedCrossRefGoogle Scholar
  92. 92.
    Gabele E, Muhlbauer M, Dorn C, et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun.. 2008;376:271–276.PubMedCrossRefGoogle Scholar
  93. 93.
    Friedman SL, Arthur MJ. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest. 1989;84:1780–1785.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rivera CA, Bradford BU, Hunt KJ, et al. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol. 2001;281:G200–G207.PubMedGoogle Scholar
  95. 95.
    Crespo J, Cayon A, Fernandez-Gil P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001;34:1158–1163.PubMedCrossRefGoogle Scholar
  96. 96.
    Manco M, Marcellini M, Giannone G, Nobili V. Correlation of serum TNF-alpha levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. Am J Clin Pathol. 2007;127:954–960.PubMedCrossRefGoogle Scholar
  97. 97.
    Saemann MD, Bohmig GA, Osterreicher CH, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14:2380–2382.PubMedGoogle Scholar
  98. 98.
    Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463–472.PubMedCrossRefGoogle Scholar
  99. 99.
    Scheppach W. Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group. Dig Dis Sci. 1996;41:2254–2259.PubMedCrossRefGoogle Scholar
  100. 100.
    Luhrs H, Gerke T, Muller JG, et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol. 2002;37:458–466.PubMedCrossRefGoogle Scholar
  101. 101.
    Vernia P, Annese V, Bresci G, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur J Clin Investig. 2003;33:244–248.CrossRefGoogle Scholar
  102. 102.
    Hamer HM, Jonkers DM, Vanhoutvin SA, et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin Nutr. 2010;29:738–744.PubMedCrossRefGoogle Scholar
  103. 103.
    Aoyama T, Inokuchi S, Brenner DA, Seki E. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology. 2010;52:1390–1400.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013;58:1461–1473.PubMedCrossRefGoogle Scholar
  105. 105.
    Ding BS, Cao Z, Lis R, et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505:97–102.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–680.PubMedCrossRefGoogle Scholar
  107. 107.
    Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett. 2003;85:85–95.PubMedCrossRefGoogle Scholar
  108. 108.
    Harry D, Anand R, Holt S, et al. Increased sensitivity to endotoxemia in the bile duct-ligated cirrhotic rat. Hepatology. 1999;30:1198–1205.PubMedCrossRefGoogle Scholar
  109. 109.
    De Minicis S, Rychlicki C, Agostinelli L, et al. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology. 2014;59:1738–1749.PubMedCrossRefGoogle Scholar
  110. 110.
    Boursier J, Mueller O, Barret M, et al. The severity of NAFLD is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2015. doi: 10.1002/hep.28356.Google Scholar
  111. 111.
    Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–1609.PubMedCrossRefGoogle Scholar
  112. 112.
    Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60:824–831.PubMedCrossRefGoogle Scholar
  113. 113.
    Gangarapu V, Ince AT, Baysal B, et al. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27:840–845.PubMedCrossRefGoogle Scholar
  114. 114.
    Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773–1781.PubMedCrossRefGoogle Scholar
  115. 115.
    Gadaleta RM, van Erpecum KJ, Oldenburg B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–472.PubMedCrossRefGoogle Scholar
  116. 116.
    Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920–3925.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol. 2012;56:1283–1292.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–965.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145:574–582. (e571).PubMedCrossRefGoogle Scholar
  120. 120.
    Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–127.PubMedCrossRefGoogle Scholar
  121. 121.
    Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11:e861–e863.Google Scholar
  122. 122.
    Malaguarnera M, Vacante M, Antic T, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012;57:545–553.PubMedCrossRefGoogle Scholar
  123. 123.
    Aller R, De Luis DA, Izaola O, et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci. 2011;15:1090–1095.PubMedGoogle Scholar
  124. 124.
    Wong VW, Won GL, Chim AM, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol. 2013;12:256–262.PubMedGoogle Scholar
  125. 125.
    Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr. 2014;99:535–542.PubMedCrossRefGoogle Scholar
  126. 126.
    Vajro P, Mandato C, Licenziati MR, et al. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2011;52:740–743.PubMedCrossRefGoogle Scholar
  127. 127.
    Alisi A, Bedogni G, Baviera G, et al. Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2014;39:1276–1285.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children’s Hospital of BuffaloThe State University of New York at BuffaloBuffaloUSA
  2. 2.BuffaloUSA

Personalised recommendations