Digestive Diseases and Sciences

, Volume 61, Issue 5, pp 1314–1324 | Cite as

Role of MicroRNAs in NAFLD/NASH

  • Gyongyi SzaboEmail author
  • Timea Csak


MicroRNAs (miRNAs) are highly conserved, small, 18–25 nucleotide, non-coding RNAs that regulate gene expression at the post-transcriptional level. Each miRNA can regulate hundreds of target genes, and vice versa each target gene can be regulated by numerous miRNAs, suggesting a very complex network and explaining how miRNAs play pivotal roles in fine-tuning essentially all biological processes in all cell types in the liver. Here, we summarize the current knowledge on the role of miRNAs in the pathogenesis and diagnosis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) with an outlook to the broader aspects of metabolic syndrome. Furthermore, we discuss the role of miRNAs as potential biomarkers and therapeutic targets in NAFLD/NASH.




Compliance with ethical standards

Conflict of interest



  1. 1.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartel DP. MicroRNA target recognition and regulatory functions. Cell. 2009;136:215–233.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bala S, Marcos M, Kodys K, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem. 2011;286:1436–1444.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Orom UA, Nielsen FC, Lund AH. Microrna-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–471.PubMedCrossRefGoogle Scholar
  5. 5.
    Ohtsuka M, Ling H, Doki Y, Mori M, Calin GA. MicroRNA processing and human cancer. J Clin Med. 2015;4:1651–1667.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.PubMedCrossRefGoogle Scholar
  7. 7.
    Londin E, Loher P, Telonis AG, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015;112:E1106–E1115.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Szabo G, Bala S. MicroRNAs in liver diseases. Nat Rev Gastroenterol Hepatol. 2013;10:542–552.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Maffioletti E, Tardito D, Genarelli M, Bocchio-Chiavetto L. Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci. 2014;8:75.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cheung O, Puri I, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–1820.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Feng YY, Xu XQ, Ji CB, Shi CM, Guo XR, Fu JF. Aberrant hepatic microRNA expression in nonalcoholic fatty liver disease. Cell Physiol Biochem. 2014;34:1983–1997.PubMedCrossRefGoogle Scholar
  12. 12.
    Karere GM, Glenn JP, VandeBerg JL, Cox LA. Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons. BMC Genom. 2012;13:320.CrossRefGoogle Scholar
  13. 13.
    Dolganiuc A, Petrasek J, Kodys K, et al. MicroRNA expression profile in Lieber–DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Med. 2009;33:1704–1710.CrossRefGoogle Scholar
  14. 14.
    Wang B, Majumder S, Nuovo G, et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 2009;50:1152–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hoekstra M, van der Sluis RJ, Kuiper J, Van Berkel TJ. Nonalcoholic fatty liver disease is associated with an altered hepatocyte microRNA profile in LDL receptor knockout mice. J Nutr Biochem. 2012;23:622–628.PubMedCrossRefGoogle Scholar
  16. 16.
    Enache LS, Enache EL, Ramiere C, et al. Circulating RNA molecules as biomarkers in liver disease. Int J Mol Sci. 2014;15:17644–17666.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Turchinovich A, Weiz L, Langheinz A, Bruwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–7233.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–10518.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–1741.PubMedCrossRefGoogle Scholar
  21. 21.
    Arrojo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–5008.CrossRefGoogle Scholar
  22. 22.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–433.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–R134.PubMedCrossRefGoogle Scholar
  24. 24.
    Turchinovich A, Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and plasma. RNA Biol. 2012;9:1066–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bala S, Petrasek J, Mundkur S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56:1946–1957.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pirola CJ, Fernandez-Gianotti T, Castano GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64:800–812.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;424:99–103.PubMedCrossRefGoogle Scholar
  28. 28.
    Csak T, Bala S, Lippai D, et al. microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int.. 2015;35:532–541.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS ONE. 2014;9:e105192.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–659.PubMedCrossRefGoogle Scholar
  31. 31.
    Bala S, Csak T, Momen-Heravi F, et al. Biodistribution and function of extracellular miRNA-155 in mice. Sci Rep. 2015;5:10721.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Arner P, Kulyte A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol. 2015;11:276–288.PubMedCrossRefGoogle Scholar
  33. 33.
    Ge Q, Brichard S, Yi X, Li Q. microRNA as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res. 2014; ID: 987285.Google Scholar
  34. 34.
    Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys. 2015. doi: 10.1016/ Scholar
  35. 35.
    Schneeberger M, Gomez-Valades AG, Ramirez S, Gomis R, Claret M. Hypothalamic miRNAs: emerging roles in energy balance control. Front Neurosci. 2015;9:41.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen H, Lan HY, Roukos DH, Cho WC. Application of mircroRNAs in diabetes mellitus. J Endocrinol. 2014;222:R1–R10.PubMedCrossRefGoogle Scholar
  37. 37.
    Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with major role in type-2 diabetes. WIREs RNA. 2014;5:697–712.PubMedGoogle Scholar
  38. 38.
    Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–1846.PubMedCrossRefGoogle Scholar
  39. 39.
    Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis. 2015;239:192–202.PubMedCrossRefGoogle Scholar
  40. 40.
    Estep M, Armistead D, Hossain N, et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2010;32:487–497.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharma H, Estep M, Birerdinc A, et al. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2013;28:1410–1415.PubMedCrossRefGoogle Scholar
  42. 42.
    Li S, Chen X, Zhang H, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res. 2009;50:1756–1765.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Katsura A, Morishita A, Iwama H, et al. MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis. Int J Mol Med. 2015;35:877–884.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kita Y, Takamura T, Misu H, et al. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS ONE. 2012;7:e43056.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.PubMedCrossRefGoogle Scholar
  46. 46.
    Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in nonhuman primates. Nature. 2008;452:896–899.PubMedCrossRefGoogle Scholar
  47. 47.
    Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122—a key factor and therapeutic target in liver disease. J Hepatol. 2015;2:448–457.CrossRefGoogle Scholar
  48. 48.
    Wilson JA, Sagan SM. Hepatitis C virus and human miR-122: insights from the bench to the clinic. Curr Opin Virol. 2014;7:11–18.PubMedCrossRefGoogle Scholar
  49. 49.
    Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122:2884–2897.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hsu SH, Wang B, Kota J, et al. Essential metabolic, antiinflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871–2883.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS ONE. 2015;10:e0129251.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Miller AM, Gilchrist DS, Nijjar J, et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS ONE. 2013;8:e72324.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sun C, Huang F, Liu X, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med. 2015;35:847–853.PubMedGoogle Scholar
  54. 54.
    Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res. 2012;56:1665–1674.PubMedCrossRefGoogle Scholar
  55. 55.
    Loyer X, Paradis V, Henique C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2015. doi: 10.1136/gutjnl-2014-308883.PubMedGoogle Scholar
  56. 56.
    Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;28:1566–1569.CrossRefGoogle Scholar
  57. 57.
    Allen RM, Marquart TJ, Albert CJ, et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med. 2012;4:882–895.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Li T, Francl JM, Boehme S, Chiang JYL. Regulation of cholesterol and bile acid homeostasis by the CYP7A1/SREBP2/miR-33a axis. Hepatology. 2013;58:1111–1121.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Horie T, Nishino T, Baba O, et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun. 2013;4:2883.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lee J, Padhye A, Sharma A, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285:12604–12611.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 2008;105:13421–13426.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating MicroRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE. 2011;6:e23937.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ng R, Wu H, Xiao H, et al. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology. 2014;60:554–564.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vincent R, Sanyal A. Recent advances in understanding of NASH: microRNAs as both biochemical markers and players. Curr Pathibiol Rep. 2014;2:109–115.CrossRefGoogle Scholar
  65. 65.
    Lee HM, Nguyen DT, Lu LF. Progress and challenge of microRNA research in immunity. Front Genet. 2014;5:178.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tili E, Michaille JJ, Costinean S, Corce CM. MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol. 2008;4:534–541.PubMedCrossRefGoogle Scholar
  67. 67.
    Du J, Niu X, Wang Y, et al. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep. 2015;5:16163.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hur W, Lee JH, Kim SW, et al. Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/Akt pathway. Int J Biochem Cell Biol. 2015;64:265–276.PubMedCrossRefGoogle Scholar
  69. 69.
    Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56:1384–1391.PubMedCrossRefGoogle Scholar
  70. 70.
    Wu H, Ng R, Chen X, Steer CJ, Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut. 2015. doi: 10.1136/gutjnl-2014-308430.Google Scholar
  71. 71.
    Zhang J, Jiao J, Cermelli S, et al. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24 + progenitor cells. Cancer Res. 2015;75:1859–1867.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhao J, Tang N, Wu K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS ONE. 2014;9:e108005.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17:193–199.PubMedCrossRefGoogle Scholar
  74. 74.
    Corey KE, Misdraji J, Gelrud L, et al. Obstructive sleep apnea is associated with nonalcoholic steatohepatitis and advanced live histology. Dig Dis Sci. 2015;60:2523–2528.PubMedCrossRefGoogle Scholar
  75. 75.
    Ahmed MH, Byrne CD. Obstructive sleep apnea syndrome and fatty liver: association or casual link? World J Gastroenterol. 2010;16:4243–4252.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schutte K, Schultz C, Link A, Malfertheiner P. Current biomarkers for hepatocellular carcinome: surveillance, diagnosis and prediction of prognosis. World J Gastroenterol. 2015;7:139–149.Google Scholar
  78. 78.
    Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. Biomed Res Int. 2014;2014:741465.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol. 2014;49:589–593.PubMedCrossRefGoogle Scholar
  80. 80.
    Callegari E, Gramantieri L, Domenicali M, D’Abundo L, Sabbioni S, Negrini M. MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ. 2015;22:46–57.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chartoumpekis DV, Zaravinos A, Ziros PG, et al. Differential expression of microRNAs in adipose tissue after long-term high fat diet-induced obesity in mice. PLoS ONE 2012;7. ID: e34872.Google Scholar
  82. 82.
    Ortega FJ, Moreno-Navarrete JM, Pardo G, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 2010;5. ID: e9022.Google Scholar
  83. 83.
    Kloting N, Berthold S, Kovacs P, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PloS ONE 2009;4. ID e4699.Google Scholar
  84. 84.
    Heneghan HM, Miller N, McAnenea OJ, O’Brian T, Kerin MJ. Differential miRNA expression in omental adipose and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrin Metab. 2011;96:E846–E850.CrossRefGoogle Scholar
  85. 85.
    Son YH, Ka S, Kim AY, Kim JB. Regulation of adipocyte differentiation via mircoRNAs. Endocrinol Metab (Seoul). 2014;29:122–135.CrossRefGoogle Scholar
  86. 86.
    Strum JC, Johnson JH, Ward J, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23:1876–1884.PubMedCrossRefGoogle Scholar
  87. 87.
    Parra P, Serra E, Palou A, et al. Expression of adipose MicroRNA is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS ONE 2010;5. ID: e13005.Google Scholar
  88. 88.
    Arner E, Mejhert N, Kulyte A, et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes. 2012;61:1986–1993.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity associated adipose tissue inflammation. Circulation. 2012;125:2892–2903.PubMedCrossRefGoogle Scholar
  90. 90.
    Ge Q, Gerard J, Noel L, Scroyen I, Brichard SM. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology. 2012;153:5285–5296.PubMedCrossRefGoogle Scholar
  91. 91.
    Ogawa R, Tanaka C, Sato M, et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. BBRC. 2010;398:723–729.PubMedGoogle Scholar
  92. 92.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Turnbaugh PJ, Hamadt M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031.PubMedCrossRefGoogle Scholar
  95. 95.
    Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–185.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA. The intestinal microbiota in chronic liver diseases. Adv Immunol. 2013;117:73–97.PubMedCrossRefGoogle Scholar
  97. 97.
    Agel B, DiBaise JK. Role of gut microbiome in nonalcoholic fatty liver disease. Nutr Clin Pract. 2015;30:780–786.CrossRefGoogle Scholar
  98. 98.
    Quigley EM, Monsour HP. The gut microbiota and nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:262–269.PubMedCrossRefGoogle Scholar
  99. 99.
    Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.PubMedCrossRefGoogle Scholar
  100. 100.
    Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.PubMedCrossRefGoogle Scholar
  101. 101.
    Vijay-Kumat M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–231.CrossRefGoogle Scholar
  102. 102.
    Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–350.PubMedCrossRefGoogle Scholar
  103. 103.
    Velayudham A, Dolagniuc A, Ellis M, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology. 2009;49:989–997.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Runtsch MC, Round JL, O’Connell RM. MicroRNAs and the regulation of intestinal homeostasis. Front Genet. 2014;5. ID: 347.Google Scholar
  105. 105.
    Biton M, Levin A, Slyper M, et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol. 1994;12:239–246.CrossRefGoogle Scholar
  106. 106.
    Ye D, Guo S, Al-Sadi R, Ma TY. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 2011;141:132–1333.CrossRefGoogle Scholar
  107. 107.
    Clare S, John V, Walker AW, et al. Enhanced susceptibility to Citrobacter rodentium infection in mircroRNA-155-deficient mice. Infect Immun. 2013;81:723–732.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lippai D, Bala S, Catalano D, Kodys K, Szabo G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res. 2014;38:2217–2224.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Das LM, Torres-Castillo MDLA, Gill T, Levine AD. TGFβ conditions intestinal T cells to express increased levels of miR-155, associated with downregulation of IL-2 and itk mRNA. Mucosal Immunol. 2013;6:167–176.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Brain O, Owens BMJ, Pichulik T, et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 2013;39:521–536.PubMedCrossRefGoogle Scholar
  111. 111.
    Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression. Curr Drug Targets. 2015;16:1315–1323.PubMedCrossRefGoogle Scholar
  112. 112.
    Takahashi H, Kanno T, Nakayamada S, et al. TGFβ and retinoic acid induce the microRNA miR-10a, which targets bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13:587–595.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Reavan GM. Banting lecture 1988: role of insulin resistance in human disease. Diabetes. 1998;37:1595–1607.Google Scholar
  114. 114.
    Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–438.PubMedCrossRefGoogle Scholar
  115. 115.
    Billiet L, Doaty S, Katz JD, Velasquez MT. Review of hyperuricemia as new marker for metabolic syndrome. ISRN Rheumatol. 2014;2014:852954.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: current knowledge and future perspectives. World J Clin Cases. 2015;3:285–292.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Seetho IW, Wilding JP. Sleep-disordered breathing, type 2 diabetes and the metabolic syndrome. Chron Respir Dis. 2014;11:257–275.PubMedCrossRefGoogle Scholar
  118. 118.
    Baldani DP, Skrgatic L, Ouquaq R. Polycystic ovary syndrome: important underrecognized cardiometabolic risk factor in reproductive-age women. Int J Endocrinol. 2015;2015:786362.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kaya E, Sikka SC, Gur S. A comprehensive review of metabolic syndrome affecting erectile dysfunction. J Sex Med. 2015;12:856–875.PubMedCrossRefGoogle Scholar
  120. 120.
    Voiculescu VM, Lupu M, Papagheorghe L, Giurcaneanu C, Micu E. Psoriasis and metabolic syndrome—scientific evidence and therapeutic implications. J Med Life. 2014;7:468–471.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Ganzetti G, Campanati A, Offidani A. Non-alcoholic fatty liver disease and psoriasis: so far, so near. World J Hepatol. 2015;7:315–326.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Prasad GV. Metabolic syndrome and chronic kidney disease: current status and future directions. World J Nephrol. 2014;3:210–219.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Legakis I, Syrigos K. Obesity modulation—the role in carcinogenesis. Anticancer Agents Med Chem. 2010;10:481–490.PubMedCrossRefGoogle Scholar
  124. 124.
    Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and cardiovascular diseases. BioMed Res Int 2015; ID: 682857.Google Scholar
  125. 125.
    Pua HH, Ansel KM. MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol. 2015;36:101–108.PubMedCrossRefGoogle Scholar
  126. 126.
    Ebrahimi A, Sadroddiny E. MicroRNAs in lung diseases: recent findings and their pathophysiological implications. Pulm Pharmacol Ther. 2015;34:55–63.PubMedCrossRefGoogle Scholar
  127. 127.
    Sorensen AE, Wissing ML, Salo S, Englund AL, Dalgaard LT. MicroRNAs related to polycystic ovary syndrome (PCOS). Genes (Basel). 2014;5:684–708.Google Scholar
  128. 128.
    Xia J, Zhang W. microRNAs in normal and psoriatic skin. Physiol Genomics. 2014;46:113–122.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23–33.PubMedCrossRefGoogle Scholar
  130. 130.
    Iracheta-Vellve A, Petrasek J, Satishchandran A, et al. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J Hepatol. 2015;63:1147–1155.PubMedCrossRefGoogle Scholar
  131. 131.
    Petrasek J, Iracheta-Vellve A, Saha B, et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells on alcoholic liver disease. J Leukoc Biol. 2015;98:249–256.PubMedCrossRefGoogle Scholar
  132. 132.
    Rock KL, Kataoka H, Lai JJ. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013;9:13–23.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.PubMedCrossRefGoogle Scholar
  134. 134.
    Baldwin W, McRahe S, Marek G, et al. Hyperuricaemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60:1258–1269.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307–3315.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sun DQ, Wu SJ, Liu WY, et al. Serum uric acid: a new therapeutic target for nonalcoholic fatty liver disease. Expert Opin Ther Targets. 2015;30:1–13.Google Scholar
  137. 137.
    Lin H, Li Q, Liu X, et al. Liver fat content is associated with elevated serum uric acid in the Chinese middle-aged and elderly populations: Shanghai Changfeng Study. PLoS ONE. 2015;10:e40379.Google Scholar
  138. 138.
    Dalbeth N, Pool B, Shaw OM, et al. Role of miR-146a in regulation of the acute inflammatory response to monosodium urate crystals. Ann Rheum Dis. 2015;74:786–790.PubMedCrossRefGoogle Scholar
  139. 139.
    Yu S, Hong Q, Wang Y, et al. High concentrations of uric acid inhibit angiogenesis via regulation of the Kruppel-Like-Factor 2-Vascular Endothelial Growth Factor-A axis by miR-92a. Circ J. 2015; PMID: 26299712.Google Scholar
  140. 140.
    Hong Q, Yu S, Geng X, et al. High concentrations of uric acid inhibit endothelial cell migration via miR-663 which regulates phosphatase and tensin homolog by targeting transforming growth factor-β1. Microcirculation. 2015;22:306–314.PubMedCrossRefGoogle Scholar
  141. 141.
    Ciupinska-Kajor M, Hartleb M, Kajor M, et al. Hepatic angiogenesis and fibrosis are common features in morbidly obese patients. Hepatol Int. 2013;7:233–240.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Brookdale University Hospital and Medical CenterBrooklynUSA

Personalised recommendations