Advertisement

Digestive Diseases and Sciences

, Volume 61, Issue 3, pp 785–794 | Cite as

Hint1 Up-Regulates IκBα by Targeting the β-TrCP Subunit of SCF E3 Ligase in Human Hepatocellular Carcinoma Cells

  • Zhitian Shi
  • Xuesong Wu
  • Yang Ke
  • Lin WangEmail author
Original Article

Abstract

Background and Aim

There is increasing evidence that histidine triad nucleotide-binding protein 1 (HINT1) is a novel tumor suppressor. In the present study, we investigated the mechanism by which HINT1 promotes the stability of inhibitor of NF-κB α (IκBα) in the cytoplasm of hepatocellular carcinoma (HCC) cells, which was observed in our previous study (Wang et al. in Int J Cancer 124:1526–1534, 2009).

Methods

We examined HINT1 and IκBα expression in HCC cell lines and determined the effect of HINT1 overexpression and knockdown on IκBα protein and mRNA expression in these cell lines. Then, ubiquitination assays were performed to investigate the effects of HINT1 expression plasmid transfection on IκBα ubiquitination. Next, the interaction between HINT1 and β-TrCP was investigated in immunoprecipitation and immunofluorescence assays.

Results

Our data showed that increased HINT1 expression in HepG2 and SMMC7702 cells markedly increased IκBα protein levels, while decreased HINT1 expression markedly decreased them. Overexpression or knockdown of HINT1 did not alter the transcription of IκBα, but HINT1 inhibited proteasomal IκBα degradation and reduced its ubiquitination levels. This inhibition might occur because HINT1 is a component of the SCFβ-TrCP E3 ligase, which is responsible for IκBα ubiquitination and degradation.

Conclusion

This study provides new evidence that HINT1 is a regulator of IκBα through SCFβ-TrCP E3 ligase. These findings help to clarify the mechanism underlying the anticancer effects of HINT1.

Keywords

Hepatocellular carcinoma HINT1 protein, human I-kappa B proteins NF-kappa B SKP Cullin F-box protein ligases Beta transducin repeat-containing proteins 

Notes

Acknowledgments

The authors thank Prof. Yi Cao for generously providing the His6-ubiquitin plasmid, and Dr. Hong Chang and Dr. Chen Zhang for their valuable technical support.

Grant support

This research was supported by the National Natural Science Foundation of China (Grant Nos. 81060204 and 81360360), the Academic Leader Project of Health and Family Planning Commission of Yunnan Province (Grant No. D-201220), the Joint Fund for Yunnan Provincial Science and Technology Department-Kunming Medical University (Grant No. 2013FB149), the Innovation Team Project of Yunnan Colleges and Universities (2014) and the Innovation Team Project of Yunnan Province (Grant No. 2015HC033) to L.W.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    McDonald JR, Walsh MP. Ca2+-binding proteins from bovine brain including a potent inhibitor of protein kinase C. Biochem J. 1985;232:559–567.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Brenner C. Hint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry. 2002;41:9003–9014.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Su T, Suzui M, Wang L, Lin CS, Xing WQ, Weinstein IB. Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis. Proc Natl Acad Sci USA. 2003;100:7824–7829.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Li H, Zhang Y, Su T, Santella RM, Weinstein IB. Hint1 is a haplo-insufficient tumor suppressor in mice. Oncogene. 2006;25:713–721.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang L, Zhang Y, Li H, Xu Z, Santella RM, Weinstein IB. Hint1 inhibits growth and activator protein-1 activity in human colon cancer cells. Cancer Res. 2007;67:4700–4708.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang L, Li H, Zhang Y, Santella RM, Weinstein IB. HINT1 inhibits beta-catenin/TCF4, USF2 and NFkappaB activity in human hepatoma cells. Int J Cancer. 2009;124:1526–1534.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–310.CrossRefPubMedGoogle Scholar
  8. 8.
    Katsha A, Soutto M, Sehdev V, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology. 2013;145:1312–1322.CrossRefPubMedGoogle Scholar
  9. 9.
    Peng DF, Hu TL, Soutto M, Belkhiri A, El-Rifai W. Loss of glutathione peroxidase 7 promotes TNF-alpha-induced NF-kappaB activation in Barrett’s carcinogenesis. Carcinogenesis. 2014;35:1620–1628.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med. 2006;145:676–684.CrossRefPubMedGoogle Scholar
  11. 11.
    Nakayama KI, Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol. 2005;16:323–333.CrossRefPubMedGoogle Scholar
  12. 12.
    Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol. 2009;10:659–671.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang CH, Liu Y, Wu HJ. Relationships between beta-Trcp and tumors. Chin J Cell Biol. 2011;33:6.Google Scholar
  14. 14.
    Fuchs SY, Spiegelman VS, Kumar KG. The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene. 2004;23:2028–2036.CrossRefPubMedGoogle Scholar
  15. 15.
    Kanarek N, Ben-Neriah Y. Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs. Immunol Rev. 2012;246:77–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Banerjee S, Zmijewski JW, Lorne E, Liu G, Sha Y, Abraham E. Modulation of SCF beta-TrCP-dependent I kappaB alpha ubiquitination by hydrogen peroxide. J Biol Chem. 2010;285:2665–2675.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Da Silva-Ferrada E, Torres-Ramos M, Aillet F, et al. Role of monoubiquitylation on the control of IkappaBalpha degradation and NF-kappaB activity. PLoS One. 2011;6:e25397.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res. 2011;21:22–39.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Cen B, Li H, Weinstein IB. Histidine triad nucleotide-binding protein 1 up-regulates cellular levels of p27KIP1 by targeting ScfSKP2 ubiquitin ligase and Src. J Biol Chem. 2009;284:5265–5276.CrossRefPubMedGoogle Scholar
  20. 20.
    Elsharkawy AM, Mann DA. Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology. 2007;46:590–597.CrossRefPubMedGoogle Scholar
  21. 21.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–436.CrossRefPubMedGoogle Scholar
  22. 22.
    Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog. 2006;45:355–361.CrossRefPubMedGoogle Scholar
  23. 23.
    Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008;18:19–26.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Weiske J, Huber O. The histidine triad protein Hint1 triggers apoptosis independent of its enzymatic activity. J Biol Chem. 2006;281:27356–27366.CrossRefPubMedGoogle Scholar
  25. 25.
    Razin E, Zhang ZC, Nechushtan H, et al. Suppression of microphthalmia transcriptional activity by its association with protein kinase C-interacting protein 1 in mast cells. J Biol Chem. 1999;274:34272–34276.CrossRefPubMedGoogle Scholar
  26. 26.
    Weiske J, Huber O. The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-catenin-mediated transcription. J Cell Sci. 2005;118:3117–3129.CrossRefPubMedGoogle Scholar
  27. 27.
    Ougolkov A, Zhang B, Yamashita K, et al. Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer Inst. 2004;96:1161–1170.CrossRefPubMedGoogle Scholar
  28. 28.
    Koch A, Waha A, Hartmann W, et al. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin Cancer Res. 2005;11:4295–4304.CrossRefPubMedGoogle Scholar
  29. 29.
    Saitoh T, Katoh M. Expression profiles of betaTRCP1 and betaTRCP2, and mutation analysis of betaTRCP2 in gastric cancer. Int J Oncol. 2001;18:959–964.PubMedGoogle Scholar
  30. 30.
    Gluschnaider U, Hidas G, Cojocaru G, Yutkin V, Ben-Neriah Y, Pikarsky E. Beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor. PLoS One. 2010;5:e9060.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Hansen DV, Loktev AV, Ban KH, Jackson PK. Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell. 2004;15:5623–5634.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Watanabe N, Arai H, Nishihara Y, Taniguchi M, Hunter T, Osada H. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci USA. 2004;101:4419–4424.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Deng D, El-Rifai W, Ji J, et al. Hypermethylation of metallothionein-3 CpG island in gastric carcinoma. Carcinogenesis. 2003;24:25–29.CrossRefPubMedGoogle Scholar
  34. 34.
    Kuester D, El-Rifai W, Peng D, et al. Silencing of MGMT expression by promoter hypermethylation in the metaplasia–dysplasia–carcinoma sequence of Barrett’s esophagus. Cancer Lett. 2009;275:117–126.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kuester D, Dar AA, Moskaluk CC, et al. Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia. 2007;9:236–245.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Mohamed MM, Sabet S, Peng DF, Nouh MA, El-Shinawi M, El-Rifai W. Promoter hypermethylation and suppression of glutathione peroxidase 3 are associated with inflammatory breast carcinogenesis. Oxid Med Cell Longev. 2014;2014:787195.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Peng D, Hu T, Soutto M, Belkhiri A, Zaika A, El-Rifai W. Glutathione peroxidase 7 has potential tumour suppressor functions that are silenced by location-specific methylation in oesophageal adenocarcinoma. Gut. 2014;63:540–551.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Zhang YJ, Li H, Wu HC, et al. Silencing of Hint1, a novel tumor suppressor gene, by promoter hypermethylation in hepatocellular carcinoma. Cancer Lett. 2009;275:277–284.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Hua D, Hu Y, Wu YY, et al. Quantitative methylation analysis of multiple genes using methylation-sensitive restriction enzyme-based quantitative PCR for the detection of hepatocellular carcinoma. Exp Mol Pathol. 2011;91:455–460.CrossRefPubMedGoogle Scholar
  40. 40.
    Calvisi DF, Ladu S, Pinna F, et al. SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis. Gastroenterology. 2009;137:1816–1826.CrossRefPubMedGoogle Scholar
  41. 41.
    Genovese G, Ghosh P, Li H, et al. The tumor suppressor HINT1 regulates MITF and beta-catenin transcriptional activity in melanoma cells. Cell Cycle. 2012;11:2206–2215.CrossRefPubMedGoogle Scholar
  42. 42.
    Zimon M, Baets J, Almeida-Souza L, et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat Genet. 2012;44:1080–1083.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Hepatobiliary SurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunming CityChina
  2. 2.Department of Gastroenterological SurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunming CityChina
  3. 3.Kunming CityChina

Personalised recommendations