Digestive Diseases and Sciences

, Volume 59, Issue 12, pp 2983–2991 | Cite as

Enzymatic Liver Function Capacity Correlates with Disease Severity of Patients with Liver Cirrhosis: A Study with the LiMAx Test

  • Maciej Malinowski
  • Maximilian Jara
  • Katja Lüttgert
  • James Orr
  • Johan Friso Lock
  • Eckart Schott
  • Martin Stockmann
Original Article



Assessment and quantification of actual liver function is crucial in patients with chronic liver disease to monitor disease progression and predict individual prognosis. Mathematical models, such as model for end-stage liver disease, are used for risk stratification of patients with chronic liver disease but do not include parameters that reflect the actual functional state of the liver.


We aimed to evaluate the potential of a 13C-based liver function test as a stratification tool by comparison with other liver function tests and clinical parameters in a large sample of healthy controls and cirrhotic patients.


We applied maximum liver function capacity (LiMAx) to evaluate actual liver function in 347 patients with cirrhosis and in 86 controls.


LiMAx showed strong negative correlation with Child-Pugh Score (r = −0.707; p < 0.001), MELD (r = −0.686; p < 0.001) and liver function tests. LiMAx was lower in patients with liver cirrhosis compared to healthy controls [99 (57–160) µg/kg/h vs. 412 (365–479) µg/kg/h, p < 0.001] and differed among Child-Pugh classes [a: 181 (144–227) µg/kg/h, b: 96 (62–132) µg/kg/h and c: 52 (37–81) µg/kg/h; p < 0.001]. When stratified patients according to disease severity, LiMAx results were not different between cirrhotic patients and cirrhotic patients with transjugular intrahepatic portosystemic shunt.


LiMAx appears to provide reliable information on remnant enzymatic liver function in chronic liver disease and allows graduation of disease severity.


LiMAx Cirrhosis Liver function Liver function tests Disease severity Surrogate marker 



This study was funded in part by the European Union’s 7th Framework Programme, d-LIVER Grant agreement no. 287596.

Conflict of interest

Martin Stockmann is the inventor of the LiMAx test and has capital interest in Humedics, the company marketing the LiMAx test. In addition he is steering board member for the d-LIVER Project (funded by the European Commission Framework Program). Maximilian Jara and James Orr disclose receiving research Grants in order of the d-LIVER European Commission Framework Program (Grant agreement no. 287596). Remaining authors who have taken part in this study declared that they do not have anything to disclosure regarding funding or conflict of interest with respect to this manuscript.


  1. 1.
    Desmet VJ, Gerber M, Hoofnagle JH, Manns M, Scheuer PJ. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology. 1994;19:1513–1520.PubMedCrossRefGoogle Scholar
  2. 2.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–649.PubMedCrossRefGoogle Scholar
  3. 3.
    Kamath PS, Kim WR. The Model for End-stage Liver Disease (MELD). Hepatology. 2007;45:797–805.PubMedCrossRefGoogle Scholar
  4. 4.
    Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–1026.PubMedCrossRefGoogle Scholar
  5. 5.
    Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–526.PubMedCrossRefGoogle Scholar
  6. 6.
    Oellerich M, Burdelski M, Lautz HU, Schulz M, Schmidt FW, Herrmann H. Lidocaine metabolite formation as a measure of liver function in patients with cirrhosis. Ther Drug Monit. 1990;12:219–226.PubMedCrossRefGoogle Scholar
  7. 7.
    Mion F, Queneau PE, Rousseau M, Brazier JL, Paliard P, Minaire Y. Aminopyrine breath test: development of a 13C-breath test for quantitative assessment of liver function in humans. Hepatogastroenterology.. 1995;42:931–938.PubMedGoogle Scholar
  8. 8.
    Figg WD, Dukes GE, Lesesne HR, et al. Comparison of quantitative methods to assess hepatic function: Pugh’s classification, indocyanine green, antipyrine, and dextromethorphan. Pharmacotherapy.. 1995;15:693–700.PubMedGoogle Scholar
  9. 9.
    Baruque S, Razquin M, Jimenez I, Vazquez A, Gisbert JP, Pajares JM. 13C-phenylalanine and 13C-methacetin breath test to evaluate functional capacity of hepatocyte in chronic liver disease. Dig Liver Dis. 2000;32:226–232.CrossRefGoogle Scholar
  10. 10.
    Herold C, Heinz R, Radespiel-Troger M, Schneider HT, Schuppan D, Hahn EG. Quantitative testing of liver function in patients with cirrhosis due to chronic hepatitis C to assess disease severity. Liver.. 2001;21:26–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Parra D, Gonzalez A, Garcia-Villarreal L, Martinez JA. Methodological characterization of the 2-keto [1-13C]isocaproate breath test to measure in vivo human mitochondrial function: application in alcoholic liver disease assessment. Alcohol Clin Exp Res.. 2003;27:1293–1298.PubMedCrossRefGoogle Scholar
  12. 12.
    Park GJ, Katelaris PH, Jones DB, Seow F, Le Couteur DG, Ngu MC. Validity of the 13C-caffeine breath test as a noninvasive, quantitative test of liver function. Hepatology. 2003;38:1227–1236.PubMedCrossRefGoogle Scholar
  13. 13.
    Mukherjee S, Rogers MA, Buniak B. Comparison of indocyanine green clearance with Child’s-Pugh score and hepatic histology: a multivariate analysis. Hepatogastroenterology. 2006;53:120–123.PubMedGoogle Scholar
  14. 14.
    Forestier J, Dumortier J, Guillaud O. Noninvasive diagnosis and prognosis of liver cirrhosis: a comparison of biological scores, elastometry, and metabolic liver function tests. Eur J Gastroenterol Hepatol. 2010;22:532–540.PubMedCrossRefGoogle Scholar
  15. 15.
    Afolabi P, Wright M, Wootton SA, Jackson AA. 13C-aminopyrine demethylation is decreased in cirrhotic patients with normal biochemical markers. Isotopes Environ Health Stud. 2013;49:346–356.PubMedCrossRefGoogle Scholar
  16. 16.
    Stockmann M, Lock JF, Riecke B, et al. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg. 2009;250:119–125.PubMedCrossRefGoogle Scholar
  17. 17.
    Stockmann M, Lock JF, Malinowski M, Niehues SM, Seehofer D, Neuhaus P. The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB (Oxford). 2010;12:139–146.CrossRefGoogle Scholar
  18. 18.
    Palmer CN, Coates PJ, Davies SE, Shephard EA, Phillips IR. Localization of cytochrome P-450 gene expression in normal and diseased human liver by in situ hybridization of wax-embedded archival material. Hepatology.. 1992;16:682–687.PubMedCrossRefGoogle Scholar
  19. 19.
    Pfaffenbach B, Gotze O, Szymanski C, Hagemann D, Adamek RJ. The 13C-methacetin breath test for quantitative noninvasive liver function analysis with an isotope-specific nondispersive infrared spectrometer in liver cirrhosis. Dtsch Med Wochenschr.. 1998;123:1467–1471.PubMedCrossRefGoogle Scholar
  20. 20.
    Lock JF, Malinowski M, Seehofer D, et al. Function and volume recovery after partial hepatectomy: influence of preoperative liver function, residual liver volume, and obesity. Langenbecks Arch Surg. 2012;397:1297–1304.PubMedCrossRefGoogle Scholar
  21. 21.
    Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–470.PubMedCrossRefGoogle Scholar
  22. 22.
    Riordan SM, Williams R. Treatment of hepatic encephalopathy. N Engl J Med. 1997;337:473–479.PubMedCrossRefGoogle Scholar
  23. 23.
    Moore KP, Aithal GP. Guidelines on the management of ascites in cirrhosis. Gut. 2006;55:vi1–vi12.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Stockmann M, Lock JF, Malinowski M, et al. How to define initial poor graft function after liver transplantation?—A new functional definition by the LiMAx test. Transpl Int. 2010;23:1023–1032.PubMedCrossRefGoogle Scholar
  25. 25.
    Lock JF, Schwabauer E, Martus P, et al. Early diagnosis of primary nonfunction and indication for reoperation after liver transplantation. Liver Transpl. 2010;16:172–180.PubMedCrossRefGoogle Scholar
  26. 26.
    Lock JF, Kotobi AN, Malinowski M, et al. Predicting the prognosis in acute liver failure: results from a retrospective pilot study using the LiMAx test. Ann Hepatol. 2013;12:556–562.PubMedGoogle Scholar
  27. 27.
    Baker AL, Krager PS, Kotake AN, Schoeller DA. The aminopyrine breath test does not correlate with histologic disease severity in patients with cholestasis. Hepatology. 1987;7:464–467.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med. 2005;353:1261–1273.PubMedCrossRefGoogle Scholar
  29. 29.
    Weismuller TJ, Wedemeyer J, Kubicka S, Strassburg CP, Manns MP. The challenges in primary sclerosing cholangitis–aetiopathogenesis, autoimmunity, management and malignancy. J Hepatol. 2008;48(Suppl 1):S38–S57.PubMedCrossRefGoogle Scholar
  30. 30.
    Giannini EG, Savarino V. Relationship between 13C-aminopyrine breath test and the MELD score and its long-term prognostic use in patients with cirrhosis. Dig Dis Sci. 2013;58:3024–3028.PubMedCrossRefGoogle Scholar
  31. 31.
    Schneider JF, Baker AL, Haines NW, Hatfield G, Boyer JL. Aminopyrine N-demethylation: a prognostic test of liver function in patients with alcoholic liver disease. Gastroenterology. 1980;79:1145–1150.PubMedGoogle Scholar
  32. 32.
    Merkel C, Gatta A, Zoli M, et al. Prognostic value of galactose elimination capacity, aminopyrine breath test, and ICG clearance in patients with cirrhosis. Comparison with the Pugh score. Dig Dis Sci. 1991;36:1197–1203.PubMedCrossRefGoogle Scholar
  33. 33.
    Degre D, Bourgeois N, Boon N, et al. Aminopyrine breath test compared to the MELD and Child-Pugh scores for predicting mortality among cirrhotic patients awaiting liver transplantation. Transpl Int. 2004;17:31–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Fabbri A, Bianchi G, Motta E, Brizi M, Zoli M, Marchesini G. The galactose elimination capacity test: a study of the technique based on the analysis of 868 measurements. Am J Gastroenterol. 1996;91:991–996.PubMedGoogle Scholar
  35. 35.
    Stremmel W, Wojdat R, Groteguth R, et al. [Liver function tests in a clinical comparison]. Z Gastroenterol. 1992;30:784–790.PubMedGoogle Scholar
  36. 36.
    Stockmann M, Malinowski M, Lock JF, Seehofer D, Neuhaus P. Factors influencing the indocyanine green (ICG) test: additional impact of acute cholestasis. Hepatogastroenterology.. 2009;56:734–738.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maciej Malinowski
    • 1
  • Maximilian Jara
    • 1
  • Katja Lüttgert
    • 1
  • James Orr
    • 2
  • Johan Friso Lock
    • 4
  • Eckart Schott
    • 3
  • Martin Stockmann
    • 1
  1. 1.Department of General, Visceral and Transplantation Surgery, Campus Virchow KlinikumCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.Institute of Cellular MedicineNewcastle UniversityNewcastle Upon TyneUK
  3. 3.Department of Hepatology and Gastroenterology, Campus Virchow KlinikumCharité - Universitätsmedizin BerlinBerlinGermany
  4. 4.Department of General-, Visceral-, Vascular- and Paediatric SurgeryUniversity Hospital of WürzburgWürzburgGermany

Personalised recommendations