Digestive Diseases and Sciences

, Volume 59, Issue 6, pp 1197–1206 | Cite as

Caspase 3 Inactivation Protects Against Hepatic Cell Death and Ameliorates Fibrogenesis in a Diet-Induced NASH Model

  • Samjhana Thapaliya
  • Alexander Wree
  • Davide Povero
  • Maria Eugenia Inzaugarat
  • Michael Berk
  • Laura Dixon
  • Bettina G. Papouchado
  • Ariel E. FeldsteinEmail author
Original Article



Hepatocyte cell death is a key feature of nonalcoholic steatohepatitis (NASH). As the contribution of specific caspases remains unclear, our aim was to ascertain the effect of caspase 3 suppression on liver injury and fibrogenesis.


C57BL/6 wild-type (WT) and caspase 3 knock out (Casp3 /) mice were placed on a methionine- and choline-deficient (MCD) diet for 6 weeks to induce steatohepatitis and liver fibrosis. Thereafter, liver injury, liver fibrosis and hepatocellular apoptosis were quantified in liver sections. Additionally, expression of proteins associated with liver inflammation and fibrogenesis was analyzed.


WT mice fed MCD diet showed marked activation of caspase 3 in hepatocytes, in conjunction with steatohepatitis and increased hepatic triglyceride levels, hepatocyte ballooning, inflammation and fibrosis. Casp3 / mice fed the MCD diet showed similar serum aminotransferase levels and NAFLD activity scores (NAS) compared with WT MCD-fed mice. However, Casp3 / mice on the MCD diet showed a marked reduction in expression of transcripts for profibrogenic genes, which translated into reduced hepatic collagen deposition. These changes were associated with decreased levels of apoptosis, and a significant reduction in the expression of cytokines involved in inflammatory signaling. Casp3 / mice on the MCD showed a reduction in expression of chemokine receptor 2 (CCR2) leading to ameliorated infiltration of inflammatory lymphocyte antigen 6 complex, locus C1 (Ly6c) positive monocytes.


These findings support a prominent role for hepatocyte caspase 3 activation in NASH-related apoptosis, fibrogenesis and fibrosis which in part is mediated via CCR2-dependent infiltration of Ly6c positive monocytes.


Nonalcoholic fatty liver disease Caspases Apoptosis Liver injury Liver fibrosis 



This work was supported by NIH Grants (DK076852) and (DK082451) to AEF.

Conflict of interest


Supplementary material

10620_2014_3167_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    Wieckowska A, Feldstein AE. Nonalcoholic fatty liver disease in the pediatric population: a review. Curr Opin Pediatr. 2005;17:636–641.PubMedCrossRefGoogle Scholar
  2. 2.
    Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.PubMedCrossRefGoogle Scholar
  3. 3.
    Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–1395.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics. 2006;118:1388–1393.PubMedCrossRefGoogle Scholar
  5. 5.
    Wieckowska A, Feldstein AE. Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin Liver Dis. 2008;28:386–395.PubMedCrossRefGoogle Scholar
  6. 6.
    Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113–121.PubMedCrossRefGoogle Scholar
  7. 7.
    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–1419.PubMedCrossRefGoogle Scholar
  8. 8.
    Ekstedt M, Franzen LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–873.PubMedCrossRefGoogle Scholar
  9. 9.
    Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125:437–443.PubMedCrossRefGoogle Scholar
  10. 10.
    Cazanave SC, Gores GJ. Mechanisms and clinical implications of hepatocyte lipoapoptosis. Clin Lipidol. 2010;5:71–85.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008;27:6194–6206.PubMedCrossRefGoogle Scholar
  12. 12.
    Weber IT, Fang B, Agniswamy J. Caspases: structure-guided design of drugs to control cell death. Mini Rev Med. 2008;8:1154–1162.CrossRefGoogle Scholar
  13. 13.
    Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem. 2009;284:21777–21781.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424.PubMedCrossRefGoogle Scholar
  15. 15.
    Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J. 2004;384:201–232.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Feldstein A, Gores GJ. Steatohepatitis and apoptosis: therapeutic implications. Am J Gastroenterol. 2004;99:1718–1719.PubMedCrossRefGoogle Scholar
  17. 17.
    Wieckowska A, Zein NN, Yerian LM, Lopez AR, McCullough AJ, Feldstein AE. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology. 2006;44:27–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Hatting M, Zhao G, Schumacher F, et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology. 2013;57:2189–2201.PubMedCrossRefGoogle Scholar
  19. 19.
    Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One. 2013;8:e56100.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Woo M, Hakem R, Soengas MS, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 1998;12:806–819.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Nanji AA. Animal models of nonalcoholic fatty liver disease and steatohepatitis. Clinics in Liver Disease. 2004;8:559–574, ix.Google Scholar
  22. 22.
    Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis. 2001;21:89–104.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.PubMedCrossRefGoogle Scholar
  24. 24.
    Alkhouri N, Dixon LJ, Feldstein AE. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol. 2009;3:445–451.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Feldstein AE, Gores GJ. Apoptosis in alcoholic and nonalcoholic steatohepatitis. Front Biosci. 2005;10:3093–3099.PubMedCrossRefGoogle Scholar
  26. 26.
    Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47:1495–1503.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol. 2003;39:978–983.PubMedCrossRefGoogle Scholar
  28. 28.
    Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40:185–194.PubMedCrossRefGoogle Scholar
  29. 29.
    Green DR. Apoptotic pathways: ten minutes to dead. Cell. 2005;121:671–674.PubMedCrossRefGoogle Scholar
  30. 30.
    Chowdhury I, Tharakan B, Bhat GK. Caspases—an update. Comp Biochem Physiol B Biochem Mol Biol. 2008;151:10–27.PubMedCrossRefGoogle Scholar
  31. 31.
    Barreyro FJ, Holod S, Finocchietto PV et al. The pan-caspase inhibitor emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 2014. (Epub ahead of print). doi: 10.1111/liv.12570.
  32. 32.
    Witek RP, Stone WC, Karaca FG, et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology. 2009;50:1421–1430.PubMedCrossRefGoogle Scholar
  33. 33.
    Anstee QM, Concas D, Kudo H, et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol. 2010;53:542–550.PubMedCrossRefGoogle Scholar
  34. 34.
    Alkhouri N, Gornicka A, Berk MP, et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem. 2010;285:3428–3438.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Syn WK, Choi SS, Diehl AM. Apoptosis and cytokines in non-alcoholic steatohepatitis. Clin Liver Dis. 2009;13:565–580.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology. 2005;128:138–146.PubMedCrossRefGoogle Scholar
  37. 37.
    Seki E, De Minicis S, Gwak GY, et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Investig. 2009;119:1858–1870.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Tacke F. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis Tissue Repair. 2012;5:S27.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Karlmark KR, Weiskirchen R, Zimmermann HW, et al. Hepatic recruitment of the inflammatory Gr1 + monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50:261–274.PubMedCrossRefGoogle Scholar
  40. 40.
    Seki E, de Minicis S, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50:185–197.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Samjhana Thapaliya
    • 1
  • Alexander Wree
    • 2
  • Davide Povero
    • 2
  • Maria Eugenia Inzaugarat
    • 2
  • Michael Berk
    • 1
  • Laura Dixon
    • 1
  • Bettina G. Papouchado
    • 3
  • Ariel E. Feldstein
    • 2
    Email author
  1. 1.Department of Cellular and Molecular Medicine, Lerner Research InstituteCleveland ClinicClevelandUSA
  2. 2.Department of PediatricsUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of PathologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations