Digestive Diseases and Sciences

, Volume 59, Issue 8, pp 1966–1975 | Cite as

Randomized Pilot Study: Effects of an Exercise Programme and Leucine Supplementation in Patients with Cirrhosis

  • Eva Román
  • Mª Teresa Torrades
  • Mª Josep Nadal
  • Guillem Cárdenas
  • Juan Camilo Nieto
  • Sílvia Vidal
  • Helena Bascuñana
  • Cándido Juárez
  • Carlos Guarner
  • Juan Córdoba
  • Germán SorianoEmail author
Original Article



Physical exercise could improve functional limitations, muscle mass, and health-related quality of life (HRQoL) in patients with cirrhosis.


The purpose of this study was to evaluate the efficacy and safety of an exercise programme and leucine supplementation to increase exercise capacity, muscle mass, and HRQoL in patients with cirrhosis.

Patients and Methods

Seventeen outpatients with cirrhosis were randomized to an exercise group (n = 8) or a control group (n = 9) in a pilot study. The programme of moderate exercise was performed for 12 weeks under supervision of a physiotherapist. All patients received oral leucine (10 g/day) during the study. At baseline and at the end of the study, we determined exercise capacity (6-min walk and 2-min step tests), anthropometric measurements, and HRQoL by Short Form-36 (SF-36) questionnaire. We also analyzed safety regarding complications of cirrhosis, liver and renal function, inflammatory response and oxidative stress.


In the exercise group, exercise capacity improved, as shown by the increase in the 6-min walk test from 365 (160–420) to 445 m (250–500) (p = 0.01), and in the 2-min step test (p = 0.02). Lower thigh circumference also increased, from 41 (34–53) to 46 cm (36–56) (p = 0.02), and the domains of SF-36 general health (p = 0.03), vitality (p = 0.01) and social function (p = 0.04) improved significantly. In the control group, no statistically significant changes were observed in any of the parameters. We did not observe complications of cirrhosis in either group during the study.


A programme of moderate physical exercise together with leucine supplements in patients with cirrhosis is safe and improves exercise capacity, leg muscle mass and HRQoL.


Cirrhosis Branched-chain amino acids Muscle mass Effort tolerance 



S.V. was supported by “Fondo de Investigaciones Sanitarias” and participant in the Program for Stabilization of Investigators of the “Direcció d’Estrategia i Coordinació del Departament de Salut de la Generalitat de Catalunya”. This study has been supported in part by a grant of Fundación MAPFRE, Madrid, Spain. The authors thank Carolyn Newey for revising the English, Ignasi J. Gich from the Clinical Epidemiology Department of Hospital de la Santa Creu i Sant Pau for assistance with statistical analysis, and SHS-Nutricia for kindly providing the leucine supplements.

Conflict of interest


Supplementary material

10620_2014_3086_MOESM1_ESM.doc (628 kb)
Supplementary material 1 (DOC 628 kb)


  1. 1.
    Alberino F, Gatta A, Amodio P, et al. Nutrition and survival in patients with liver cirrhosis. Nutrition. 2001;17:445–450.PubMedCrossRefGoogle Scholar
  2. 2.
    Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10:166–173.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones JC, Coombes JS, Macdonald GA. Exercise capacity and muscle strength in patients with cirrhosis. Liver Transpl. 2012;18:146–151.PubMedCrossRefGoogle Scholar
  4. 4.
    Kachaamy T, Bajaj JS, Heuman DM. Muscle and mortality in cirrhosis. Clin Gastroenterol Hepatol. 2012;10:100–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Terziyski K, Andonov V, Marinov B, Kostaniev S. Exercise performance and ventilatory efficiency in patients with mild and moderate liver cirrhosis. Clin Exp Pharmacol Physiol. 2008;35:135–140.PubMedGoogle Scholar
  6. 6.
    Alameri HF, Sanai FM, Al Dukhayil M, et al. Six minute walk test to assess functional capacity in chronic liver disease patients. World J Gastroenterol. 2007;13:3996–4001.PubMedGoogle Scholar
  7. 7.
    Román E, Córdoba J, Torrens M, et al. Falls and cognitive dysfunction impair health-related quality of life in patients with cirrhosis. Eur J Gastroenterol Hepatol. 2013;25:77–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Carey EJ, Steidley DE, Aqel BA, et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010;16:1373–1378.PubMedCrossRefGoogle Scholar
  9. 9.
    Córdoba J, Mínguez B. Hepatic encephalopathy. Semin Liver Dis. 2008;28:70–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Olde Damink SW, Jalan R, Redhead DN, et al. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and TIPSS. Hepatology. 2002;36:1163–1171.PubMedCrossRefGoogle Scholar
  11. 11.
    Hunter GR, McCarthy JP, Bamman MM. Effects of resistance training in older adults. Sports Med. 2004;34:329–348.PubMedCrossRefGoogle Scholar
  12. 12.
    Tabet JY, Meurin P, Driss AB, et al. Benefits of exercise training in chronic hearth failure. Arch Cardiovasc Dis. 2009;102:721–730.PubMedCrossRefGoogle Scholar
  13. 13.
    Segura-Orti E, Johansen KL. Exercise in end-stage renal disease. Semin Dial. 2010;23:422–430.PubMedCrossRefGoogle Scholar
  14. 14.
    Dereli EE, Yaliman A. Comparison of the effects of a physiotherapist-supervised exercise programme and a self-supervised exercise programme in quality of life in patients with Parkinson’s disease. Clin Rehabil. 2010;24:352–362.PubMedCrossRefGoogle Scholar
  15. 15.
    Duarte-Rojo A, Torres-Vega MA, Villamil-Ramírez H, et al. Changes in peripheral blood mononuclear cells glutamine synthetase mRNA after exercise in healthy volunteers: exploring an alternative proposal for non hepatic ammonia metabolism. Rev Invest Clin. 2012;64:164–172.PubMedGoogle Scholar
  16. 16.
    Ploeger HE, Takken T, de Greef MH, Timmons BW. The effects of acute and chronic exercise on inflammatory markers in children and adults with a chronic inflammatory disease: a systematic review. Exerc Immunol Rev. 2009;15:6–41.PubMedGoogle Scholar
  17. 17.
    Guarner C, Soriano G. Bacterial translocation and its consequences in patients with cirrhosis. Eur J Gastroenterol Hepatol. 2005;17:27–31.PubMedCrossRefGoogle Scholar
  18. 18.
    García-Pagán JC, Santos C, Barberá JA, et al. Physical exercise increases portal pressure in patients with cirrhosis and portal hypertension. Gastroenterology. 1996;111:1300–1306.PubMedCrossRefGoogle Scholar
  19. 19.
    Bandi JC, García-Pagán JC, Escorsell A, et al. Effects of propranolol on the hepatic hemodynamic response to physical exercise in patients with cirrhosis. Hepatology. 1998;28:677–682.PubMedCrossRefGoogle Scholar
  20. 20.
    Saló J, Guevara M, Fernández-Esparrach G, et al. Impairment of renal function during moderate physical exercise in cirrhotic patients with ascites: relationship with the activity of neurohormonal systems. Hepatology. 1997;25:1338–1342.PubMedCrossRefGoogle Scholar
  21. 21.
    Sinniah D, Fulton TT, McCullough H. The effect of exercise on the venous blood ammonium concentration in man. J Clin Pathol. 1970;23:715–719.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mergener M, Martins MR, Antunes MV, et al. Oxidative stress and DNA damage in older adults that do exercise regularly. Clin Biochem. 2009;42:1648–1653.PubMedCrossRefGoogle Scholar
  23. 23.
    Jalan R, Kapoor D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin Sci. 2004;106:467–474.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee KC, Yang YY, Wang YW, et al. Increased plasma malondialdehyde in patients with viral cirrhosis and its relationship to plasma nitric oxide, endotoxin and portal pressure. Dig Dis Sci. 2010;55:2077–2085.PubMedCrossRefGoogle Scholar
  25. 25.
    Ritland S, Petlund CF, Knudsen T, Skrede S. Improvement of physical capacity after long-term training in patients with chronic active hepatitis. Scand J Gastroenterol. 1983;18:1083–1087.PubMedCrossRefGoogle Scholar
  26. 26.
    Campillo B, Fouet P, Bonnet JC, Atlan G. Submaximal oxygen consumption in liver cirrhosis. Evidence of severe functional aerobic impairment. J Hepatol. 1990;10:163–167.PubMedCrossRefGoogle Scholar
  27. 27.
    Pattullo V, Duarte-Rojo A, Soliman W, et al. A 24-week dietary and physical activity lifestyle intervention reduces hepatic insulin resistance in the obese with chronic hepatitis C. Liver Int. 2013;33:410–419.PubMedCrossRefGoogle Scholar
  28. 28.
    Konishi I, Hiasa Y, Tokumoto Y, et al. Aerobic exercise improves insulin resistance and decreases body fat and serum levels of leptin in patients with hepatitis C virus. Hepatol Res. 2011;41:928–935.PubMedCrossRefGoogle Scholar
  29. 29.
    Kawaguchi T, Izumi N, Charlton MR, Sata M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology. 2011;54:1063–1070.PubMedCrossRefGoogle Scholar
  30. 30.
    Les I, Doval E, García-Martínez R, et al. Effects of branched chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy. Am J Gastroenterol. 2011;106:1081–1088.PubMedCrossRefGoogle Scholar
  31. 31.
    Walker DK, Dickinson JM, Timmerman KL, et al. Exercise, amino acids and aging in the control of human muscle protein synthesis. Med Sci Sports Exerc. 2011;43:2249–2258.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    ATS Committee on Proficiency Standards for Clinical Pulmonary. Function laboratories. ATS statement: guideline for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–117.Google Scholar
  33. 33.
    Weissenborn K, Ennen JC, Schomerus H, Rückert N, Hecker H. Neuropsychological characterization of hepatic encephalopathy. J Hepatol. 2001;34:768–773.PubMedCrossRefGoogle Scholar
  34. 34.
    Romero-Gómez M, Córdoba J, Jover R, et al. Red Nacional de Investigación de Encefalopatía Hepática. Normality tables in the Spanish population for psychometric tests used in the diagnosis of minimal hepatic encephalopathy. Med Clin (Barc). 2006;127:246–249.CrossRefGoogle Scholar
  35. 35.
    Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Häussinger D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology. 2002;35:357–366.PubMedCrossRefGoogle Scholar
  36. 36.
    Enright PL, Sherrill DL. Reference equations for the six-minute walk in healthy adults. Am J Respir Crit Care Med. 1998;158:1384–1387.PubMedCrossRefGoogle Scholar
  37. 37.
    Pichurko BM. Exercising your patient: which test(s) and when? Respir Care. 2012;57:100–110.PubMedCrossRefGoogle Scholar
  38. 38.
    Lukaski H. Sarcopenia: assessment of muscle mass. J Nutr. 1997;127:994S–997S.PubMedGoogle Scholar
  39. 39.
    Wang J, Thornton JC, Kolesnik S, Pierson RN Jr. Anthropometry in body composition. An overview. Ann NY Acad Sci. 2000;904:317–326.PubMedCrossRefGoogle Scholar
  40. 40.
    Alonso J, Prieto L, Antó JM. The Spanish version of the SF-36 Health Survey (the SF-36 health questionnaire): an instrument for measuring clinical results. Med Clin (Barc). 1995;104:771–776.Google Scholar
  41. 41.
    Pina IL, Apstein CS, Balady GJ, et al. Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation. 2003;107:1210–1225.PubMedCrossRefGoogle Scholar
  42. 42.
    Nici L, Donner C, Wouters E, et al. American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med. 2006;173:1390–1413.PubMedCrossRefGoogle Scholar
  43. 43.
    Centers for Disease Control and Prevention. Target Heart Rate and Estimated Maximum Heart Rate. Atlanta, GA, USA. 2011. Accessed 27 February 2014.
  44. 44.
    Beyer N, Aadahl M, Strange B, et al. Improved physical performance after orthotopic liver transplantation. Liver Transpl Surg. 1999;5:301–309.PubMedCrossRefGoogle Scholar
  45. 45.
    Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Fiatarone Singh MA. Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr. 2004;80:475–482.PubMedGoogle Scholar
  46. 46.
    Kotoh K, Nakamuta M, Fukushima M, et al. High relative fat-free mass is important for maintaining serum albumin levels in patients with compensated liver cirrhosis. World J Gastroenterol. 2005;11:1356–1360.PubMedGoogle Scholar
  47. 47.
    Packer N, Hoffman-Goetz L, Ward G. Does physical activity affect quality of life, disease symptoms and immune measures in patients with inflammatory bowel disease? A systematic review. J Sports Med Phys Fit. 2010;50:1–44.Google Scholar
  48. 48.
    Stroth S, Hille K, Spitzer M, Reinhardt R. Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol Rehabil. 2009;19:223–243.PubMedCrossRefGoogle Scholar
  49. 49.
    Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc. 2011;86:876–884.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60:16–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Wilkinson DJ, Hossain T, Hill DS, et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013;591:2911–2923.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Salerno F, Borroni G, Moser P, et al. Survival and prognostic factors of cirrhotic patients with ascites: a study of 134 outpatients. Am J Gastroenterol. 1993;88:514–519.PubMedGoogle Scholar
  53. 53.
    Puhan MA, Gimeno-Santos E, Scharplatz M, Troosters T, Walters EH, Steurer J. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011;10:CD005305.PubMedGoogle Scholar
  54. 54.
    Heran BS, Chen JM, Ebrahim S, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2011;7:CD001800.PubMedGoogle Scholar
  55. 55.
    Román E, Córdoba J, Torrens M, et al. Minimal hepatic encephalopathy is associated with falls. Am J Gastroenterol. 2011;106:476–482.PubMedCrossRefGoogle Scholar
  56. 56.
    Soriano G, Román E, Córdoba J, et al. Cognitive dysfunction is associated with falls. A prospective study. Hepatology. 2012;55:1922–1930.PubMedCrossRefGoogle Scholar
  57. 57.
    Michael YL, Whitlock EP, Lin JS, et al. Primary care-relevant interventions to prevent falling in older adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2010;153:815–825.PubMedCrossRefGoogle Scholar
  58. 58.
    Francoz C, Glotz D, Moreau R, Duran F. The evaluation of renal function and disease in patients with cirrhosis. J Hepatol. 2010;52:605–613.PubMedCrossRefGoogle Scholar
  59. 59.
    Cervoni JP, Thévenot T, Weil D, et al. C-reactive protein predicts short-term mortality in patients with cirrhosis. J Hepatol. 2012;56:1299–1304.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eva Román
    • 1
    • 2
    • 3
    • 7
    • 8
  • Mª Teresa Torrades
    • 4
  • Mª Josep Nadal
    • 4
  • Guillem Cárdenas
    • 6
  • Juan Camilo Nieto
    • 2
    • 5
    • 7
  • Sílvia Vidal
    • 2
    • 5
    • 7
  • Helena Bascuñana
    • 4
  • Cándido Juárez
    • 2
    • 5
  • Carlos Guarner
    • 1
    • 2
    • 7
    • 8
  • Juan Córdoba
    • 6
    • 7
    • 8
  • Germán Soriano
    • 1
    • 2
    • 7
    • 8
    Email author
  1. 1.Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
  2. 2.Institut de Recerca-IIB Sant PauHospital de la Santa Creu i Sant PauBarcelonaSpain
  3. 3.Hospital de la Santa Creu i Sant Pau, Escola Universitària d’Infermeria EUI-Sant PauBarcelonaSpain
  4. 4.Department of Physical Medicine and RehabilitationHospital de la Santa Creu i Sant PauBarcelonaSpain
  5. 5.Department of ImmunologyHospital de la Santa Creu i Sant PauBarcelonaSpain
  6. 6.Department of Internal Medicine-Liver UnitHospital Vall d’HebronBarcelonaSpain
  7. 7.Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  8. 8.Instituto de Salud Carlos IIICIBERehdMadridSpain

Personalised recommendations