Digestive Diseases and Sciences

, Volume 58, Issue 2, pp 448–457 | Cite as

CD34+ Hematopoietic Stem Cells Mobilization, Paralleled with Multiple Cytokines Elevated in Patients with HBV-Related Acute-on-Chronic Liver Failure

  • Zhihong Wan
  • Shaoli You
  • Yihui Rong
  • Bing Zhu
  • Aimin Zhang
  • Hong Zang
  • Long Xiao
  • Guoming Xie
  • Shaojie XinEmail author
Original Article



Recent studies indicate that bone marrow (BM)-derived stem cells contribute to liver regeneration. But limited information is available on the dynamic and mechanisms of mobilization of BM-derived hematopoietic stem cells (HSCs) after acute-on-chronic liver failure (ACLF).


The purpose of this study was to assess the mobilization of BM-derived CD34+ HSCs in ACLF patients, and elucidate the association of stress-induced cytokines in HSCs mobilization and/or liver repair in ACLF patients.


Thirty patients with HBV-related ACLF, 30 patients undergoing chronic hepatitis B, and 20 healthy controls were enrolled. The percentages of peripheral blood CD34+ cells were determined by two-color flow cytometry. The hepatic commitment of mobilized CD34+ cells was investigated by RT-PCR. The serum levels of stress-induced cytokines were determined by enzyme-linked immunosorbent assays.


A significant increase of circulating CD34+ cells was observed in ACLF patients. RT-PCR analyses showed that the mobilized CD34+ cells expressed both CD34 mRNA and liver-specific markers including cytokeratin 19 and α-fetoprotein. In parallel with mobilization of BM-derived CD34+ cells, elevated serum levels of hepatocyte growth factor, interleukin-6, stem cell factor, granulocyte colony-stimulating factor and matrix metalloproteinase 9 were observed in ACLF patients.


We demonstrated that ACLF led to mobilization of CD34+ cells, which had a hepatic differentiation potential.


Hematopoietic stem cell Acute-on-chronic liver failure Mobilization Liver regeneration 



The research was supported by grants from the National Natural Science Foundation of China (No: 30972625), the 12th Five-Year National Science and Technology Major Project for Infectious Diseases (No: 2012ZX10002004-005), and the 12th Five-Year Grand Project of PLA (No: BWS11J075). We thank Susan Wong and Ning Zhi from Hematology Branch/National Institutes of Health in Bethesda, MD, USA for help in preparing the manuscript.

Conflict of interest



  1. 1.
    Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure; consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL). Hepatol Int. 2009;3:269–282. doi: 10.1007/s12072-008-9106-x.PubMedCrossRefGoogle Scholar
  2. 2.
    Ke WM, Ye YN, Huang S. Discriminate function for prognostic indexes and probability of death in chronic severe hepatitis B. J Gastroenterol. 2003;38:861–864. doi: 10.1007/s00535-003-1162-3.PubMedCrossRefGoogle Scholar
  3. 3.
    Custer B, Sullivan SD, Hazlet TK, et al. Global epidemiology of hepatitis B virus. J Clin Gastroenterol. 2004;38:S158–S168.PubMedCrossRefGoogle Scholar
  4. 4.
    Sell S. Heterogeneity and plasticity of hepatocyte lineages cells. Hepatology. 2001;33:738–750. doi: 10.1053/jhep.2001.21900.PubMedCrossRefGoogle Scholar
  5. 5.
    Fausto N. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev. 2003;120:117. doi: 10.1016/S0925-4773(02)00338-6.PubMedCrossRefGoogle Scholar
  6. 6.
    Alison MR, Poulsom R, Forbes SJ. Update on hepatic stem cells. Liver. 2001;21:367–373. doi: 10.1034/j.1600-0676.2001.210601.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Crosby HA, Kelly DA, Strain AJ, et al. Human hepatic stem-like cells isolated using c-kit or CD34 can differentiate into biliary epithelium. Gastroenterology. 2001;120:534–544. doi: 10.1053/gast.2001.21175.PubMedCrossRefGoogle Scholar
  8. 8.
    Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–1234. doi: 10.1038/81326.PubMedCrossRefGoogle Scholar
  9. 9.
    Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284:1168–1170.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang X, Ge S, McManara G, et al. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood. 2003;101:4201–4208. doi: 10.1182/blood-2002-05-1338.PubMedCrossRefGoogle Scholar
  11. 11.
    Lemoli RM, Catani L, Talarico S, et al. Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells. 2006;24:2817–2825. doi: 10.1634/stemcells.2006-0333.PubMedCrossRefGoogle Scholar
  12. 12.
    Gehling UM, Willems M, Dandri M, et al. Partial hepatectomy induces mobilization of a unique population of hematopoietic progenitor cells in human healthy liver donors. J Hepatol. 2005;43:845–853. doi: 10.1016/j.jhep.2005.05.022.PubMedCrossRefGoogle Scholar
  13. 13.
    De Silvestro G, Vicarioto M, Donadel C, et al. Mobilization of peripheral blood hematopoietic stem cells following liver resection surgery. Hepatogastroenterology. 2004;51:805–810.PubMedGoogle Scholar
  14. 14.
    Di Campli C, Piscaglia AC, Giulante F, et al. No evidence of hematopoietic stem cell mobilization in patients submitted to hepatectomy or in patients with acute on chronic liver failure. Transpl Proc. 2005;37:2563–2566. doi: 10.1016/j.transproceed.2005.06.072.CrossRefGoogle Scholar
  15. 15.
    Yannaki E, Athanasiou E, Xagorari A, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol. 2005;33:108–119. doi: 10.1016/j.exphem.2004.09.005.PubMedCrossRefGoogle Scholar
  16. 16.
    Jin SZ, Meng XW, Sun X, et al. Granulocytecolony-stimulating factor enhances bone marrow mononuclear cell homing to the liver in a mouse model of acute hepatic injury. Dig Dis Sci. 2010;55:2805–2813. doi: 10.1007/s10620-009-1117-5.PubMedCrossRefGoogle Scholar
  17. 17.
    Mark AL, Sun Z, Warren DS, et al. Stem cell mobilization is life saving in an animal model of acute liver failure. Ann Surg. 2010;252:591–596. doi: 10.1097/SLA.0b013e3181f4e479.PubMedGoogle Scholar
  18. 18.
    Salama H, Zekri AR, Bahnassy AA, et al. Autologous CD34+ and CD133+ stem cells transplantation in patients with end stage liver disease. World J Gastroenterol. 2010;16:5297–5305. doi: 10.3748/wjg.v16.i42.5297.PubMedCrossRefGoogle Scholar
  19. 19.
    Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells. 2006;24:2292–2298. doi: 10.1634/stemcells.2005-0542.PubMedCrossRefGoogle Scholar
  20. 20.
    Nikeghbalian S, Pournasr B, Aghdami N, et al. Autologous transplantation of bone marrow-derived mononuclear and CD133(+) cells in patients with decompensated cirrhosis. Arch Iran Med. 2011;14:12–17.PubMedGoogle Scholar
  21. 21.
    Han Y, Yan L, Han G, et al. Controlled trials in hepatitis B virus-related decompensate liver cirrhosis: peripheral blood monocyte transplant versus granulocyte-colony-stimulating factor mobilization therapy. Cytotherapy. 2008;10:390–396. doi: 10.1080/14653240802129901.PubMedCrossRefGoogle Scholar
  22. 22.
    Liver Failure and Artificial Liver Group. Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Diseases and Artificial Liver Group, Chinese Society of Hepatology. Diagnostic and treatment guidelines for liver failure. Zhonghua Gan Zang Bing Za Zhi. 2006;14:643–646.Google Scholar
  23. 23.
    Chinese Society of Infectious Diseases and Parasitology. Chinese Society of Hepatology. Management scheme of diagnostic and therapeutic criteria of viral hepatitis. Zhonghua Gan Zang Bing Za Zhi. 2000;8:324–329.Google Scholar
  24. 24.
    Theise ND, Nimmakayaku M, Gardner R, et al. Liver from bone marrow in humans. Hepatology. 2000;32:11–16. doi: 10.1053/jhep.2000.9124.PubMedCrossRefGoogle Scholar
  25. 25.
    Kleeberger W, Rothamel T, Glockner S, et al. High frequency of epithelial chimerism in liver transplants demonstrated by microdissection and STR-analysis. Hepatology. 2002;35:110. doi: 10.1053/jhep.2002.30275.PubMedCrossRefGoogle Scholar
  26. 26.
    Gehling UM, Willems M, Schlagner K, et al. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis. World J Gastroenterol. 2010;16:217–224. doi: 10.3748/wjg.v16.i2.217.PubMedCrossRefGoogle Scholar
  27. 27.
    Zoccoa MA, Piscaglia AC, Giulianteb F, et al. CD133+ stem cell mobilization after partial hepatectomy depends on resection extent and underlying disease. Dig Liver Dis. 2011;43:147–154. doi: 10.3748/wjg.v17.i15.2044.CrossRefGoogle Scholar
  28. 28.
    Wojakowski W, Tendera M, Michalowska A, et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation. 2004;110:3213–3220. doi: 10.1161/01.CIR.0000147609.39780.02.PubMedCrossRefGoogle Scholar
  29. 29.
    Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–436. doi: 10.1038/86498.PubMedCrossRefGoogle Scholar
  30. 30.
    Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res. 2008;331:283–300. doi: 10.1007/s00441-007-0542-z.PubMedCrossRefGoogle Scholar
  31. 31.
    Kollet O, Shivtiel S, Chen YQ, et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 2003;112:160–169. doi: 10.1172/JCI200317902.PubMedGoogle Scholar
  32. 32.
    Lei Y, Liu Z, Han Q, et al. G-CSF enhanced SDF-1 gradient between bone marrow and liver associated with mobilization of peripheral blood CD34+ cells in rats with acute liver failure. Dig Dis Sci. 2010;55:285–291. doi: 10.1007/s10620-009-0757-9.PubMedCrossRefGoogle Scholar
  33. 33.
    Vaquero J, Campbell JS, Haque J, et al. Toll-like receptor 4 and myeloid differentiation factor 88 provide mechanistic insights into the cause and effects of interleukin-6 activation in mouse liver regeneration. Hepatology. 2011;54:597–608. doi: 10.1002/hep.24420.PubMedCrossRefGoogle Scholar
  34. 34.
    Lam SP, Luk JM, Man K, et al. Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration. Liver Transpl. 2010;16:1195–1206. doi: 10.1002/lt.22136.PubMedCrossRefGoogle Scholar
  35. 35.
    Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17–26. doi: 10.1016/j.stem.2009.06.016.PubMedCrossRefGoogle Scholar
  36. 36.
    Consolo M, Amoroso A, Spandidos DA, et al. Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease. Int J Mol Med. 2009;24:143–152. doi: 10.3892/ijmm_00000217.PubMedGoogle Scholar
  37. 37.
    Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–2133. doi: 10.1101/gad.815400.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Zhihong Wan
    • 1
  • Shaoli You
    • 1
  • Yihui Rong
    • 1
  • Bing Zhu
    • 1
  • Aimin Zhang
    • 1
  • Hong Zang
    • 1
  • Long Xiao
    • 1
  • Guoming Xie
    • 1
  • Shaojie Xin
    • 1
    Email author
  1. 1.Liver Failure Treatment and Research CenterBeijing 302 HospitalFengtai District, BeijingChina

Personalised recommendations