Digestive Diseases and Sciences

, Volume 58, Issue 2, pp 302–308

Allostasis in Nonalcoholic Fatty Liver Disease: Implications for Risk Assessment



Allostasis, a concept of anticipatory physiological regulation in response to external and internal challenges, was originally developed in the context of neuroendocrinology and behavioral medicine. Allostasis preserves function under changing conditions by abandoning physiological set points and developing new ones. Allostatic load refers to the aggregate effect of adaptation throughout life, and corresponds to the wear and tear associated with this process. In response to chronic stress, allostatic load may accumulate faster than expected if sustained activation of regulatory systems exceeds optimum operating ranges; this results in increased risk of disease. Used in a broader sense, the allostatic model of adaptive responses, trade-offs, feed-forward cycles, and collateral damage provides a framework for assessing the involvement of environmental–genetic interactions and co-morbidities in the course of chronic disease and developing a comprehensive score for personalized risk prediction. The utility of this approach is illustrated for nonalcoholic fatty liver disease, a prevalent condition with common and less common outcomes.


Allostasis Allostatic load Outcomes Risk prediction Allostatic score Nonalcoholic fatty liver disease Hepatocellular carcinoma 


  1. 1.
    Bernard C. Leçons sur les Propriétés Physiologiques et les Altérations Pathologiques des Liquides de l’Organisme. Paris: Baillière; 1859.CrossRefGoogle Scholar
  2. 2.
    Cannon WB. Organization for physiological homeostasis. Physiol Rev. 1929;9:399–431.Google Scholar
  3. 3.
    Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 1946;6:117–230.PubMedCrossRefGoogle Scholar
  4. 4.
    Sterling P. Allostasis: a model of predictive regulation. Physiol Behav. 2011;106:5–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J, eds. Handbook of life stress, cognition, and health. New York: Wiley; 1988.Google Scholar
  6. 6.
    Power ML, Schulkin J. Maternal obesity, metabolic disease, and allostatic load. Physiol Behav. 2012;106:22–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Seeman T, Epel E, Gruenewald T, Karlamangla A, McEwen BS. Socio-economic differentials in peripheral biology: cumulative allostatic load. Ann N Y Acad Sci. 2010;1186:223–239.PubMedCrossRefGoogle Scholar
  8. 8.
    George O, Le Moal M, Koob GF. Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav. 2011;106:58–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Csete M, Doyle J. Bow ties, metabolism and disease. Trends Biotechnol. 2004;22:446–450.PubMedCrossRefGoogle Scholar
  10. 10.
    McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–2101.PubMedCrossRefGoogle Scholar
  11. 11.
    Dallman MF. Modulation of stress responses: how we cope with excess glucocorticoids. Exp Neurol. 2007;206:179–182.PubMedCrossRefGoogle Scholar
  12. 12.
    Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.PubMedCrossRefGoogle Scholar
  14. 14.
    Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in nonalcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56:1384–1391.PubMedCrossRefGoogle Scholar
  15. 15.
    El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology. 2004;126:460–468.PubMedCrossRefGoogle Scholar
  16. 16.
    Yasui K, Hashimoto E, Komorizono Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–433.PubMedCrossRefGoogle Scholar
  17. 17.
    Yeh MM, Daniel HD, Torbenson M. Hepatitis C-associated hepatocellular carcinomas in non-cirrhotic livers. Mod Pathol. 2010;23:276–283.PubMedCrossRefGoogle Scholar
  18. 18.
    Nzeako UC, Goodman ZD, Ishak KG. Hepatocellular carcinoma in cirrhotic and noncirrhotic livers. A clinico-histopathologic study of 804 North American patients. Am J Clin Pathol. 1996;105:65–75.PubMedGoogle Scholar
  19. 19.
    Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta. 2010;1801:338–349.PubMedCrossRefGoogle Scholar
  20. 20.
    Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond). 2010;34:S4–S17.CrossRefGoogle Scholar
  21. 21.
    van der Poorten D, Milner KL, Hui J, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology. 2008;48:449–457.PubMedCrossRefGoogle Scholar
  22. 22.
    Sorensen TI, Virtue S, Vidal-Puig A. Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects? Biochim Biophys Acta. 2010;1801:400–404.PubMedCrossRefGoogle Scholar
  23. 23.
    Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118:829–838.PubMedCrossRefGoogle Scholar
  24. 24.
    Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta. 2010;1801:209–214.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi SS, Diehl AM. Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr Opin Lipidol. 2008;19:295–300.PubMedCrossRefGoogle Scholar
  26. 26.
    Lodhi IJ, Wei X, Semenkovich CF. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol Metab. 2011;22:1–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ. 2006;13:374–384.PubMedCrossRefGoogle Scholar
  28. 28.
    Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 2008;134:568–576.PubMedCrossRefGoogle Scholar
  29. 29.
    Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118:316–332.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008;320:1492–1496.PubMedCrossRefGoogle Scholar
  31. 31.
    Dong H, Czaja MJ. Regulation of lipid droplets by autophagy. Trends Endocrinol Metab. 2011;22:234–240.PubMedCrossRefGoogle Scholar
  32. 32.
    Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–285.PubMedCrossRefGoogle Scholar
  33. 33.
    Baffy G. Uncoupling protein-2 and non-alcoholic fatty liver disease. Front Biosci. 2005;10:2082–2096.PubMedCrossRefGoogle Scholar
  34. 34.
    Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol. 2006;68:123–158.PubMedCrossRefGoogle Scholar
  35. 35.
    Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26:2166–2176.PubMedCrossRefGoogle Scholar
  36. 36.
    Loscalzo J, Barabasi AL. Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med. 2011;3:619–627.PubMedCrossRefGoogle Scholar
  37. 37.
    Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2010;12:56–68.CrossRefGoogle Scholar
  38. 38.
    Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA. 2008;105:9880–9885.PubMedCrossRefGoogle Scholar
  40. 40.
    Seeman TE, Singer BH, Rowe JW, Horwitz RI, McEwen BS. Price of adaptation–allostatic load and its health consequences. MacArthur studies of successful aging. Arch Intern Med. 1997;157:2259–2268.PubMedCrossRefGoogle Scholar
  41. 41.
    Seeman TE, Crimmins E, Huang MH, et al. Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of successful aging. Soc Sci Med. 2004;58:1985–1997.PubMedCrossRefGoogle Scholar
  42. 42.
    Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–1112.PubMedCrossRefGoogle Scholar
  43. 43.
    Abu-Asab MS, Chaouchi M, Alesci S, et al. Biomarkers in the age of omics: time for a systems biology approach. OMICS. 2011;15:105–112.PubMedCrossRefGoogle Scholar
  44. 44.
    Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–1465.PubMedCrossRefGoogle Scholar
  45. 45.
    Chalasani N, Guo X, Loomba R, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. Gastroenterology. 2010;139:1567–1576, 1576 e1561–1566.Google Scholar
  46. 46.
    Anstee QM, Daly AK, Day CP. Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis. 2011;31:128–146.PubMedCrossRefGoogle Scholar
  47. 47.
    Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–1820.PubMedCrossRefGoogle Scholar
  48. 48.
    Sookoian S, Rosselli MS, Gemma C, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52:1992–2000.PubMedCrossRefGoogle Scholar
  49. 49.
    Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA. 2000;97:8856–8861.PubMedCrossRefGoogle Scholar
  50. 50.
    Snowdon VK, Fallowfield JA. Models and mechanisms of fibrosis resolution. Alcohol Clin Exp Res. 2011;35:794–799.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (Outside the USA) 2012

Authors and Affiliations

  1. 1.Department of Medicine, VA Boston Healthcare System and Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Section of GastroenterologyVA Boston Healthcare SystemBostonUSA

Personalised recommendations