Digestive Diseases and Sciences

, Volume 57, Issue 8, pp 2022–2030

Intestinal Epithelial Cells with Impaired Autophagy Lose Their Adhesive Capacity in the Presence of TNF-α

  • Masaya Saito
  • Tatsuro Katsuno
  • Tomoo Nakagawa
  • Toru Sato
  • Yoshiko Noguchi
  • Sayuri Sazuka
  • Keiko Saito
  • Makoto Arai
  • Koutaro Yokote
  • Osamu Yokosuka
Original Article


Background and Objectives

Genome-wide association studies have revealed a link between autophagy-related (ATG) genes and susceptibility to Crohn’s disease. This suggests underlying involvement of autophagy impairment in the pathogenesis of Crohn’s disease. This study was performed to investigate the pathophysiological importance of autophagy impairment in intestinal epithelial cells exposed to TNF-α.


Human colonic epithelial cells (HT-29) and rat small intestinal epithelial cells (IEC-18) were used. Formation of phosphatidylethanolamine-conjugated microtubule-associated protein light chain 3 (LC3-II) was monitored as a marker of autophagy. Autophagy was inhibited using 3-methyladenine or short interfering RNA targeting ATG5 and ATG16L1.


TNF-α treatment elicited a significant dose-dependent increase in LC3-II protein levels, thus autophagy is induced in the presence of TNF-α. Combined autophagy inhibition and TNF-α treatment induced a marked increase in the number of detached cells and a decrease in activated integrin β1 protein levels. Trypan blue staining indicated 70–80 % of the detached cells were alive, suggesting that these cells became detached not because they were killed but because of dysfunction of cellular adhesion.


This is the first study indicating that intestinal epithelial cells with impaired autophagy lose their adhesive capacity in the presence of TNF-α. These observations indicate that impairment of autophagy leads to disruption of the intestinal epithelial cell layers in TNF-α-rich environments.


Crohn’s disease Autophagy-related (ATG) gene Phosphatidylethanolamine-conjugated microtubule-associated protein light chain 3 (LC3-II) 3-Methyladenine (3-MA) Integrin β1 


  1. 1.
    Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–1348.PubMedCrossRefGoogle Scholar
  2. 2.
    Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–2873.PubMedCrossRefGoogle Scholar
  3. 3.
    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–335.PubMedCrossRefGoogle Scholar
  5. 5.
    Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–889.PubMedCrossRefGoogle Scholar
  6. 6.
    Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–884.PubMedCrossRefGoogle Scholar
  7. 7.
    Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol. 2007;3:331–338.PubMedCrossRefGoogle Scholar
  8. 8.
    Py BF, Lipinski MM, Yuan J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy. 2007;3:117–125.PubMedGoogle Scholar
  9. 9.
    Birmingham CL, Smith AC, Bakowski MA, et al. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem. 2006;281:11374–11383.PubMedCrossRefGoogle Scholar
  10. 10.
    Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39:596–604.PubMedCrossRefGoogle Scholar
  11. 11.
    Consortium. TWTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678.CrossRefGoogle Scholar
  12. 12.
    Mathew CG. New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat Rev Genet. 2008;9:9–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Xavier RJ, Huett A, Rioux JD. Autophagy as an important process in gut homeostasis and Crohn’s disease pathogenesis. Gut. 2008;57:717–720.PubMedCrossRefGoogle Scholar
  14. 14.
    Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11:55–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–97.PubMedCrossRefGoogle Scholar
  16. 16.
    Kuballa P, Huett A, Rioux JD, et al. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE. 2008;3:e3391.PubMedCrossRefGoogle Scholar
  17. 17.
    Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 1982;79:1889–1892.PubMedCrossRefGoogle Scholar
  18. 18.
    Hendil KB, Lauridsen AM, Seglen PO. Both endocytic and endogenous protein degradation in fibroblasts is stimulated by serum/amino acid deprivation and inhibited by 3-methyladenine. Biochem J. 1990;272:577–581.PubMedGoogle Scholar
  19. 19.
    Plopper G, Ingber DE. Rapid induction and isolation of focal adhesion complexes. Biochem Biophys Res Commun. 1993;193:571–578.PubMedCrossRefGoogle Scholar
  20. 20.
    Koukouritaki SB, Vardaki EA, Papakonstanti EA, et al. TNF-alpha induces actin cytoskeleton reorganization in glomerular epithelial cells involving tyrosine phosphorylation of paxillin and focal adhesion kinase. Mol Med. 1999;5:382–392.PubMedGoogle Scholar
  21. 21.
    Campos SB, Ashworth SL, Wean S, et al. Cytokine-induced F-actin reorganization in endothelial cells involves RhoA activation. Am J Physiol Renal Physiol. 2009;296:F487–F495.PubMedCrossRefGoogle Scholar
  22. 22.
    Kadandale P, Stender JD, Glass CK, et al. Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment. Proc Natl Acad Sci USA. 2010;107:10502–10507.PubMedCrossRefGoogle Scholar
  23. 23.
    Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. 2003;66:1403–1408.PubMedCrossRefGoogle Scholar
  24. 24.
    Kollias G, Douni E, Kassiotis G, et al. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann Rheum Dis. 1999;58:I32–I39.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–1635.PubMedCrossRefGoogle Scholar
  26. 26.
    Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J. 2011;278:862–876.PubMedCrossRefGoogle Scholar
  27. 27.
    Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Fujishima Y, Nishiumi S, Masuda A, et al. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Arch Biochem Biophys. 2011;506:223–235.PubMedCrossRefGoogle Scholar
  29. 29.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285:1028–1032.PubMedCrossRefGoogle Scholar
  30. 30.
    Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3:1–14.CrossRefGoogle Scholar
  31. 31.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687.PubMedCrossRefGoogle Scholar
  32. 32.
    Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280.PubMedCrossRefGoogle Scholar
  33. 33.
    Gille J, Swerlick RA. Integrins: role in cell adhesion and communication. Ann N Y Acad Sci. 1996;797:93–106.PubMedCrossRefGoogle Scholar
  34. 34.
    Hodivala-Dilke KM, DiPersio CM, Kreidberg JA, et al. Novel roles for alpha3beta1 integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes. J Cell Biol. 1998;142:1357–1369.PubMedCrossRefGoogle Scholar
  35. 35.
    Choma DP, Pumiglia K, DiPersio CM. Integrin alpha3beta1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci. 2004;117:3947–3959.PubMedCrossRefGoogle Scholar
  36. 36.
    Stutzmann J, Bellissent-Waydelich A, Fontao L, et al. Adhesion complexes implicated in intestinal epithelial cell-matrix interactions. Microsc Res Tech. 2000;51:179–190.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim M, Ogawa M, Fujita Y, et al. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature. 2009;459:578–582.PubMedCrossRefGoogle Scholar
  38. 38.
    Muenzner P, Bachmann V, Zimmermann W, et al. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science. 2010;329:1197–1201.PubMedCrossRefGoogle Scholar
  39. 39.
    Kapron-Bras C, Fitz-Gibbon L, Jeevaratnam P, et al. Stimulation of tyrosine phosphorylation and accumulation of GTP-bound p21ras upon antibody-mediated alpha 2 beta 1 integrin activation in T-lymphoblastic cells. J Biol Chem. 1993;268:20701–20704.PubMedGoogle Scholar
  40. 40.
    Shaw LM, Messier JM, Mercurio AM. The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the alpha 6 beta 1 integrin. J Cell Biol. 1990;110:2167–2174.PubMedCrossRefGoogle Scholar
  41. 41.
    Chou DH, Lee W, McCulloch CA. TNF-alpha inactivation of collagen receptors: implications for fibroblast function and fibrosis. J Immunol. 1996;156:4354–4362.PubMedGoogle Scholar
  42. 42.
    Van Assche G, Vermeire S, Rutgeerts P. The potential for disease modification in Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2010;7:79–85.PubMedCrossRefGoogle Scholar
  43. 43.
    van Assche G, Vermeire S, Rutgeerts P. Mucosal healing and anti TNFs in IBD. Curr Drug Targets. 2010;11:227–233.PubMedCrossRefGoogle Scholar
  44. 44.
    Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–1395.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Masaya Saito
    • 1
  • Tatsuro Katsuno
    • 1
  • Tomoo Nakagawa
    • 1
  • Toru Sato
    • 1
  • Yoshiko Noguchi
    • 1
  • Sayuri Sazuka
    • 1
  • Keiko Saito
    • 1
  • Makoto Arai
    • 1
  • Koutaro Yokote
    • 2
  • Osamu Yokosuka
    • 1
  1. 1.Department of Medicine and Clinical Oncology (K1), Graduate School of MedicineChiba UniversityChiba-shiJapan
  2. 2.Department of Clinical Cell Biology and Medicine (F5), Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations