Digestive Diseases and Sciences

, Volume 57, Issue 5, pp 1271–1280 | Cite as

The Complex Intratumoral Heterogeneity of Colon Cancer Highlighted by Laser Microdissection

  • David BuobEmail author
  • Harold Fauvel
  • Marie-Pierre Buisine
  • Stéphanie Truant
  • Christophe Mariette
  • Nicole Porchet
  • Agnès Wacrenier
  • Marie-Christine Copin
  • Emmanuelle Leteurtre
Original Article



To evaluate the utility of laser microdissection in the comparison of phenotypes and genetic alterations between colon cancer and corresponding liver metastasis in the context of intratumoral heterogeneity.


Immunohistochemistry was performed on a series of 11 patients surgically treated for colon adenocarcinoma with liver metastases, using antibodies directed against six mucins. Immunohistochemistry was completed by laser microdissection of tumor zones with particular phenotype, luminal zone and invasion front of colon tumors. Microdissected samples were compared on the basis of microsatellite instability and alterations of CTNNB1, KRAS, and TP53.


Our study demonstrated varying mucin expression within tumors, suggesting the existence of phenotypic intratumoral heterogeneity. A common immunohistochemical profile was observed in individual tumors between tumoral subpopulations and corresponding metastases. Nevertheless, the phenotypic characteristics were distinct from one patient to another. Laser microdissection underlined that phenotypic heterogeneity could rely on genotypic heterogeneity, and that some genetic alterations were common to microdissected samples from primary colon tumors and liver metastases.


We illustrated intratumoral heterogeneity of colon cancer using laser microdissection, in combination with immunohistochemical and genotypic tools. This intratumoral heterogeneity could represent a major issue in the search of prognostic biomarkers.


Colon cancer Metastasis process Intratumoral heterogeneity Mucins Laser microdissection 



The authors thank Ms A. Ketele (INSERM U837), Mrs V. Dumetz, Mrs V. Vervaeck, Ms S. Gosselin, Mr F. Romelard, Mr M. Samyn (Pathology Department), Mrs R.M. Siminski and Mrs M.H. Gevaert (Histology Department) for their technical assistance. The authors acknowledge Drs I. Carlstedt, D. Swallow, and S.K. Batra for providing antibodies.

Conflict of interest



  1. 1.
    Sobin LH, Wittekind C. TNM Classification of Malignant Tumors. New York, NY: Wiley-Liss; 2002.Google Scholar
  2. 2.
    Lièvre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–3995.PubMedCrossRefGoogle Scholar
  3. 3.
    Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 1993;9:138–141.PubMedCrossRefGoogle Scholar
  4. 4.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767.PubMedCrossRefGoogle Scholar
  5. 5.
    Yokota J. Tumor progression and metastasis. Carcinogenesis. 2000;21:497–503.PubMedCrossRefGoogle Scholar
  6. 6.
    Bernards R, Weinberg RA. Metastasis genes: a progression puzzle. Nature. 2002;418:823.PubMedCrossRefGoogle Scholar
  7. 7.
    Eschrich S, Yang I, Bloom G, et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol. 2005;23:3526–3535.PubMedCrossRefGoogle Scholar
  8. 8.
    D’Arrigo A, Belluco C, Ambrosi A, et al. Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer. 2005;115:256–262.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66:11089–11093.PubMedCrossRefGoogle Scholar
  10. 10.
    Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23:77–99.PubMedCrossRefGoogle Scholar
  11. 11.
    Bresalier RS, Niv Y, Byrd JC, et al. Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J Clin Invest. 1991;87:1037–1045.PubMedCrossRefGoogle Scholar
  12. 12.
    Baldus SE, Mönig SP, Hanisch FG, et al. Comparative evaluation of the prognostic value of MUC1, MUC2, sialyl-Lewis(a) and sialyl-Lewis(x) antigens in colorectal adenocarcinoma. Histopathology. 2002;40:440–449.PubMedCrossRefGoogle Scholar
  13. 13.
    Jang KT, Chae SW, Sohn JH, Park HR, Shin HS. Coexpression of MUC1 with p53 or MUC2 correlates with lymph node metastasis in colorectal carcinomas. J Korean Med Sci. 2002;17:29–33.PubMedGoogle Scholar
  14. 14.
    Leteurtre E, Gouyer V, Rousseau K, et al. Differential mucin expression in colon carcinoma HT-29 clones with variable resistance to 5-fluorouracil and methotrexate. Biol Cell. 2004;96:145–151.PubMedCrossRefGoogle Scholar
  15. 15.
    Truant S, Bruyneel E, Gouyer V, et al. Requirement of both mucins and proteoglycans in cell–cell dissociation and invasiveness of colon carcinoma HT-29 cells. Int J Cancer. 2003;104:683–694.PubMedCrossRefGoogle Scholar
  16. 16.
    Leteurtre E, Zerimech F, Piessen G, et al. Relationships between mucinous gastric carcinoma, MUC2 expression and survival. World J Gastroenterol. 2006;12:3324–3331.PubMedGoogle Scholar
  17. 17.
    Copin MC, Buisine MP, Leteurtre E, et al. Mucinous bronchioloalveolar carcinomas display a specific pattern of mucin gene expression among primary lung adenocarcinomas. Hum Pathol. 2001;32:274–281.PubMedCrossRefGoogle Scholar
  18. 18.
    Park KJ, Choi HJ, Roh MS, Kwon HC, Kim C. Intensity of tumor budding and its prognostic implications in invasive colon carcinoma. Dis Colon Rectum. 2005;48:1597–1602.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamilton SR, Vogelstein B, Kudo S, et al. Carcinoma of the colon and the rectum. In: Hamilton SR, Aaltonen LA, eds. Tumours of the Digestive System. Lyon, France: IARC Press; 2000:105–119.Google Scholar
  20. 20.
    Hovenberg HW, Davies JR, Herrmann A, Lindén CJ, Carlstedt I. MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J. 1996;13:839–847.PubMedCrossRefGoogle Scholar
  21. 21.
    Llinares K, Escande F, Aubert S, et al. Diagnostic value of MUC4 immunostaining in distinguishing epithelial mesothelioma and lung adenocarcinoma. Mod Pathol. 2004;17:150–157.PubMedCrossRefGoogle Scholar
  22. 22.
    Wickström C, Davies JR, Eriksen GV, Veerman EC, Carlstedt I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J. 1998;334:685–693.PubMedGoogle Scholar
  23. 23.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257.PubMedGoogle Scholar
  24. 24.
    Canzian F, Salovaara R, Hemminki A, et al. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 1996;56:3331–3337.PubMedGoogle Scholar
  25. 25.
    Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol. 2004;122:61–69.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee MJ, Lee HS, Kim WH, Choi Y, Yang M. Expression of mucins and cytokeratins in primary carcinomas of the digestive system. Mod Pathol. 2003;16:403–410.PubMedCrossRefGoogle Scholar
  27. 27.
    You JF, Hsieh LL, Changchien CR, et al. Inverse effects of mucin on survival of matched hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer patients. Clin Cancer Res. 2006;12:4244–4250.PubMedCrossRefGoogle Scholar
  28. 28.
    Biemer-Hüttmann AE, Walsh MD, McGuckin MA, et al. Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin Cancer Res. 2000;6:1909–1916.PubMedGoogle Scholar
  29. 29.
    Ajioka Y, Allison LJ, Jass JR. Significance of MUC1 and MUC2 mucin expression in colorectal cancer. J Clin Pathol. 1996;49:560–564.PubMedCrossRefGoogle Scholar
  30. 30.
    Matsuda K, Masaki T, Watanabe T, et al. Clinical significance of MUC1 and MUC2 mucin and p53 protein expression in colorectal carcinoma. Jpn J Clin Oncol. 2000;30:89–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuwabara A, Watanabe H, Ajioka Y, et al. Alteration of p53 clonality accompanying colorectal cancer progression. Jpn J Cancer Res. 1998;89:40–46.PubMedCrossRefGoogle Scholar
  32. 32.
    Baisse B, Bouzourene H, Saraga EP, Bosman FT, Benhattar J. Intratumor genetic heterogeneity in advanced human colorectal adenocarcinoma. Int J Cancer. 2001;93:346–352.PubMedCrossRefGoogle Scholar
  33. 33.
    Fukunari H, Iwama T, Sugihara K, Miyaki M. Intratumoral heterogeneity of genetic changes in primary colorectal carcinomas with metastasis. Surg Today. 2003;33:408–413.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David Buob
    • 1
    • 2
    • 3
    Email author
  • Harold Fauvel
    • 4
  • Marie-Pierre Buisine
    • 2
    • 3
    • 5
  • Stéphanie Truant
    • 2
    • 6
  • Christophe Mariette
    • 2
    • 3
    • 7
  • Nicole Porchet
    • 2
    • 3
    • 5
  • Agnès Wacrenier
    • 1
  • Marie-Christine Copin
    • 1
    • 2
    • 3
  • Emmanuelle Leteurtre
    • 1
    • 2
    • 3
  1. 1.Department of PathologyCHRU de LilleLille CedexFrance
  2. 2.Inserm, U837, Team 5 “Mucins, Epithelial Differentiation and Carcinogenesis”, Institut de Médecine Prédictive et Recherche ThérapeutiqueJean-Pierre Aubert Research CentreLilleFrance
  3. 3.Université Lille Nord de FranceLilleFrance
  4. 4.Cell Imagery DepartmentIMPRT-IFR114, Faculté de MédecineLille CedexFrance
  5. 5.Department of Biochemistry and Molecular BiologyCHRU de LilleLille CedexFrance
  6. 6.Department of Digestive Surgery and TransplantationCHRU de LilleLille CedexFrance
  7. 7.Department of Digestive and Oncological SurgeryCHRU de LilleLille CedexFrance

Personalised recommendations