Digestive Diseases and Sciences

, Volume 57, Issue 5, pp 1190–1196 | Cite as

Increased Expression of VEGF, COX-2, and Ki-67 in Barrett’s Esophagus: Does the Length Matter?

  • Evanthia Zampeli
  • George Karamanolis
  • George Morfopoulos
  • Elias Xirouchakis
  • Vasiliki Kalampoki
  • Spyros Michopoulos
  • Sotiria Savva
  • Vasilios Tzias
  • Irene Zouboulis-Vafiadis
  • Dimitrios Kamberoglou
  • Spiros D. Ladas
Original Article

Abstract

Background

Barrett’s esophagus (BE) is a major complication of gastroesophageal reflux disease due to its neoplastic potential. The length of the metaplastic epithelium has been associated with cancer risk. Angiogenesis, inflammation, and increased cell proliferation are early events in the malignant sequence. Vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and Ki-67 are indirect markers of these complex mechanisms.

Aims

To examine the expression of VEGF, COX-2 and Ki-67 in BE and investigate whether there is an association to Barrett’s length.

Methods

Immunohistochemistry for VEGF, COX-2, and Ki-67 was performed in well-characterized Barrett’s samples, evaluated using a qualitative scale and compared between long (LSBE) and short (SSBE) segments.

Results

The study population consisted of 98 patients (78 men). LSBE and SSBE was diagnosed in 33 (33.7%) and 65 (66.3%) cases, respectively. VEGF was expressed in vascular endothelium of all Barrett’s specimens. COX-2 and Ki-67 expression in metaplastic epithelia was strong in 81.6 and 61.2% of the samples, respectively. Ki-67 expression was significantly stronger in LSBE (p = 0.035), whereas VEGF expression was significantly increased in SSBE (p = 0.031). COX-2 expression was not associated with Barrett’s length.

Conclusions

VEGF, COX-2, and Ki-67 were overexpressed in the majority of Barrett’s samples. The length was inversely associated with VEGF expression and directly associated with Ki-67 expression.

Keywords

Barrett’s esophagus Length VEGF COX-2 Ki-67 

References

  1. 1.
    Shaheen NJ, Richter JE. Barrett’s oesophagus. Lancet. 2009;373:850–861.PubMedCrossRefGoogle Scholar
  2. 2.
    Spechler SJ, Goyal RK. The columnar-lined esophagus, intestinal metaplasia, and Norman Barrett. Gastroenterology. 1996;110:614–621.PubMedCrossRefGoogle Scholar
  3. 3.
    Souza RF, Huo X, Mittal V, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137:1776–1784.PubMedCrossRefGoogle Scholar
  4. 4.
    Morales CP, Souza RF, Spechler SJ. Hallmarks of cancer progression in Barrett’s oesophagus. Lancet. 2002;360:1587–1589.PubMedCrossRefGoogle Scholar
  5. 5.
    Fitzgerald RC, Abdalla S, Onwuegbusi BA, et al. Inflammatory gradient in Barrett’s oesophagus: implications for disease complications. Gut. 2002;51:316–322.PubMedCrossRefGoogle Scholar
  6. 6.
    Jankowski J. Gene expression in Barrett’s mucosa: acute and chronic adaptive responses in the oesophagus. Gut. 1993;34:1649–1650.PubMedCrossRefGoogle Scholar
  7. 7.
    Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut. 2002;50:451–459.PubMedCrossRefGoogle Scholar
  8. 8.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.PubMedCrossRefGoogle Scholar
  10. 10.
    Auvinen MI, Sihvo EI, Ruohtula T, et al. Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma. J Clin Oncol. 2002;20:2971–2979.PubMedCrossRefGoogle Scholar
  11. 11.
    Mobius C, Stein HJ, Becker I, et al. The ‘angiogenic switch’ in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Eur J Surg Oncol. 2003;29:890–894.PubMedCrossRefGoogle Scholar
  12. 12.
    Couvelard A, Paraf F, Gratio V, et al. Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression. J Pathol. 2000;192:14–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Sihvo EI, Ruohtula T, Auvinen MI, Koivistoinen A, Harjula AL, Salo JA. Simultaneous progression of oxidative stress and angiogenesis in malignant transformation of Barrett esophagus. J Thorac Cardiovasc Surg. 2003;126:1952–1957.PubMedCrossRefGoogle Scholar
  14. 14.
    Lagorce C, Paraf F, Vidaud D, et al. Cyclooxygenase-2 is expressed frequently and early in Barrett’s oesophagus and associated adenocarcinoma. Histopathology. 2003;42:457–465.PubMedCrossRefGoogle Scholar
  15. 15.
    Morris CD, Armstrong GR, Bigley G, Green A, Attwood SE. Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Am J Gastroenterol. 2001;96:990–996.PubMedGoogle Scholar
  16. 16.
    Mobius C, Stein HJ, Spiess C, et al. COX2 expression, angiogenesis, proliferation and survival in Barrett’s cancer. Eur J Surg Oncol. 2005;31:755–759.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93:705–716.PubMedCrossRefGoogle Scholar
  18. 18.
    Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–322.PubMedCrossRefGoogle Scholar
  19. 19.
    Seo HK, Cho KS, Chung J, et al. Prognostic value of p53 and Ki-67 expression in intermediate-risk patients with nonmuscle-invasive bladder cancer receiving adjuvant intravesical mitomycin C therapy. Urology. 2010;76:512.e1–7.CrossRefGoogle Scholar
  20. 20.
    Going JJ, Keith WN, Neilson L, Stoeber K, Stuart RC, Williams GH. Aberrant expression of minichromosome maintenance proteins 2 and 5, and Ki-67 in dysplastic squamous oesophageal epithelium and Barrett’s mucosa. Gut. 2002;50:373–377.PubMedCrossRefGoogle Scholar
  21. 21.
    Sarela AI, Verbeke CS, Pring C, Guillou PJ. Is symptom control the correct end point for proton pump inhibitor treatment in Barrett’s oesophagus? Gut. 2004;53:1387–1388.PubMedCrossRefGoogle Scholar
  22. 22.
    Avidan B, Sonnenberg A, Schnell TG, Chejfec G, Metz A, Sontag SJ. Hiatal hernia size, Barrett’s length, and severity of acid reflux are all risk factors for esophageal adenocarcinoma. Am J Gastroenterol. 2002;97:1930–1936.PubMedCrossRefGoogle Scholar
  23. 23.
    Weston AP, Sharma P, Mathur S, et al. Risk stratification of Barrett’s esophagus: updated prospective multivariate analysis. Am J Gastroenterol. 2004;99:1657–1666.PubMedCrossRefGoogle Scholar
  24. 24.
    Menke-Pluymers MB, Hop WC, Dees J, van Blankenstein M, Tilanus HW. Risk factors for the development of an adenocarcinoma in columnar-lined (Barrett) esophagus. The Rotterdam Esophageal Tumor Study Group. Cancer. 1993;72:1155–1158.PubMedCrossRefGoogle Scholar
  25. 25.
    Thomas T, Abrams KR, De Caestecker JS, Robinson RJ. Meta analysis: cancer risk in Barrett’s oesophagus. Aliment Pharmacol Ther. 2007;26:1465–1477.PubMedCrossRefGoogle Scholar
  26. 26.
    Anandasabapathy S, Jhamb J, Davila M, Wei C, Morris J, Bresalier R. Clinical and endoscopic factors predict higher pathologic grades of Barrett dysplasia. Cancer. 2007;109:668–674.PubMedCrossRefGoogle Scholar
  27. 27.
    Yousef F, Cardwell C, Cantwell MM, Galway K, Johnston BT, Murray L. The incidence of esophageal cancer and high-grade dysplasia in Barrett’s esophagus: a systematic review and meta-analysis. Am J Epidemiol. 2008;168:237–249.PubMedCrossRefGoogle Scholar
  28. 28.
    Rudolph RE, Vaughan TL, Storer BE, et al. Effect of segment length on risk for neoplastic progression in patients with Barrett esophagus. Ann Intern Med. 2000;132:612–620.PubMedGoogle Scholar
  29. 29.
    Levine DS, Blount PL, Rudolph RE, Reid BJ. Safety of a systematic endoscopic biopsy protocol in patients with Barrett’s esophagus. Am J Gastroenterol. 2000;95:1152–1157.PubMedCrossRefGoogle Scholar
  30. 30.
    Lanas A, Ortego J, Sopena F, et al. Effects of long-term cyclo-oxygenase 2 selective and acid inhibition on Barrett’s oesophagus. Aliment Pharmacol Ther. 2007;26:913–923.PubMedCrossRefGoogle Scholar
  31. 31.
    Benamouzig R, Uzzan B, Martin A, et al. Cyclooxygenase-2 expression and recurrence of colorectal adenomas: effect of aspirin chemoprevention. Gut. 2010;59:622–629.PubMedCrossRefGoogle Scholar
  32. 32.
    Sikkema M, Kerkhof M, Steyerberg EW, et al. Aneuploidy and overexpression of Ki67 and p53 as markers for neoplastic progression in Barrett’s esophagus: a case–control study. Am J Gastroenterol. 2009;104:2673–2680.PubMedCrossRefGoogle Scholar
  33. 33.
    Doukas CN, Maglogiannis I, Chatziioannou A, Papapetropoulos A. Automated angiogenesis quantification through advanced image processing techniques. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2345–2348.PubMedCrossRefGoogle Scholar
  34. 34.
    Simpson JF, Ahn C, Battifora H, Esteban JM. Endothelial area as a prognostic indicator for invasive breast carcinoma. Cancer. 1996;77:2077–2085.PubMedCrossRefGoogle Scholar
  35. 35.
    Kitadai Y, Haruma K, Tokutomi T, et al. Significance of vessel count and vascular endothelial growth factor in human esophageal carcinomas. Clin Cancer Res. 1998;4:2195–2200.PubMedGoogle Scholar
  36. 36.
    Corley DA, Kerlikowske K, Verma R, Buffler P. Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology. 2003;124:47–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Vaughan TL, Dong LM, Blount PL, et al. Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett’s oesophagus: a prospective study. Lancet Oncol. 2005;6:945–952.PubMedCrossRefGoogle Scholar
  38. 38.
    Nguyen DM, Richardson P, El-Serag HB. Medications (NSAIDs, statins, proton pump inhibitors) and the risk of esophageal adenocarcinoma in patients with Barrett’s esophagus. Gastroenterology. 2010;138:2260–2266.PubMedCrossRefGoogle Scholar
  39. 39.
    Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G. Cyclooxygenase 2 expression in Barrett’s esophagus and adenocarcinoma: ex vivo induction by bile salts and acid exposure. Gastroenterology. 2000;118:487–496.PubMedCrossRefGoogle Scholar
  40. 40.
    Vallbohmer D, DeMeester SR, Oh DS, et al. Antireflux surgery normalizes cyclooxygenase-2 expression in squamous epithelium of the distal esophagus. Am J Gastroenterol. 2006;101:1458–1466.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem. 1993;268:9049–9054.PubMedGoogle Scholar
  42. 42.
    Abdalla SI, Lao-Sirieix P, Novelli MR, Lovat LB, Sanderson IR, Fitzgerald RC. Gastrin-induced cyclooxygenase-2 expression in Barrett’s carcinogenesis. Clin Cancer Res. 2004;10:4784–4792.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Evanthia Zampeli
    • 1
  • George Karamanolis
    • 2
  • George Morfopoulos
    • 3
  • Elias Xirouchakis
    • 3
  • Vasiliki Kalampoki
    • 1
  • Spyros Michopoulos
    • 1
  • Sotiria Savva
    • 3
  • Vasilios Tzias
    • 3
  • Irene Zouboulis-Vafiadis
    • 2
  • Dimitrios Kamberoglou
    • 3
  • Spiros D. Ladas
    • 2
  1. 1.Gastroenterology DepartmentAlexandra General HospitalAthensGreece
  2. 2.Gastroenterology Division, First Department of Propaedeutic and Internal MedicineAthens University Medical School, Laikon HospitalAthensGreece
  3. 3.Gastroenterology and Pathology Department1st IKA HospitalAthensGreece

Personalised recommendations