Digestive Diseases and Sciences

, Volume 57, Issue 1, pp 9–18 | Cite as

Novel Medical Therapies of Recurrent and Metastatic Gastroenteropancreatic Neuroendocrine Tumors

  • M. D. Miljković
  • M. Girotra
  • R. R. Abraham
  • R. B. Erlich
Review

Abstract

Neuroendocrine tumors (NETs) of the gastrointestinal tract and pancreas are slow-growing but commonly advanced malignancies with increasing incidence and prevalence. While locoregional disease can be effectively managed with resection, treatment of recurrent, progressive or metastatic disease has until recently been limited to palliative embolization and cytoreducitve surgery, with cytotoxic chemotherapeutic agents being the last resort. However, novel molecular targeted therapies inhibiting malignant cell proliferation and neoangiogenesis, as well as new cytotoxic chemotherapy drugs and somatostatin analogues, are all being investigated for their potential use in advanced neuroendocrine tumors. Long-acting release forms of octreotide have been shown to not only improve symptoms in carcinoid syndrome but to also delay progression of gastrointestinal NETs. On the other hand, phase III trials have demonstrated everolimus (with octreotide) and sunitinib to increase progression-free survival in pancreatic NETs. Use of bevacizumab has also shown promise in a phase II study, and results of an ongoing phase III trial comparing it to interferon are eagerly expected. Use of radiolabeled somatostatin analogues is still under investigation, though several phase II studies are encouraging. New cytotoxic agents, most notably temozolomide and capecitabine, are already in use, but their relative effectiveness compared to streptozocin in pancreatic NETs is yet to be determined.

Keywords

Neuroendocrine tumors Carcinoid mTOR inhibitors Octreotide Antiangiogenesis Chemotherapy 

References

  1. 1.
    Toumpanakis CG, Caplin ME. Molecular genetics of gastroenteropancreatic neuroendocrine tumors. Am J Gastroenterol. 2008;103:729–732.PubMedCrossRefGoogle Scholar
  2. 2.
    Oberndorfer S. Karzinoid tumore des Dunndarms. Frankf Z Pathol. 1907;1:426–430.Google Scholar
  3. 3.
    Gosset A, Masson P. Tumeurs endocrines se l’appendice. Presse Med. 2009;25:237–240.Google Scholar
  4. 4.
    Arnold R. Endocrine tumours of the gastrointestinal tract. Introduction: definition, historical aspects, classification, staging, prognosis and therapeutic options. Best Pract Res Clin Gastroenterol. 2005;19:491–505.PubMedCrossRefGoogle Scholar
  5. 5.
    Oberg K. Diagnosis and treatment of carcinoid tumors. Expert Rev Anticancer Ther. 2003;3:863–877.PubMedCrossRefGoogle Scholar
  6. 6.
    Phan AT, Yao JC. Neuroendocrine tumors: current and future medical therapies. Curr Opin Endocrinol Diabetes Obes. 2009;16:72–78.CrossRefGoogle Scholar
  7. 7.
    Maggard MA, O’Connell JB, Ko CY. Updated population-based review of carcinoid tumors. Ann Surg. 2004;240:117–122.PubMedCrossRefGoogle Scholar
  8. 8.
    Modlin I, Oberg K, Chung D, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Yao J, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–3072.PubMedCrossRefGoogle Scholar
  10. 10.
    Kulke M, Scherübl H. Accomplishments in 2008 in the management of gastrointestinal neuroendocrine tumors. Gastrointest Cancer Res. 2009;3(Suppl 2):S43–S47.Google Scholar
  11. 11.
    Pasieka JL. Carcinoid tumors. Surg Clin North Am. 2009;89:1123–1137.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Eeden S, Quaedvlieg PF, Taal BG, et al. Classification of low-grade neuroendocrine tumors of midgut and unknown origin. Hum Pathol. 2002;33:1126–1132.PubMedCrossRefGoogle Scholar
  13. 13.
    Oberg K, Astrup L, Eriksson B, et al. Guidelines for the management of gastroenteropancreatic neuroendocrine tumors (including bronchopulmonary and thymic neoplasms). Part I-general overview. Acta Oncol. 2004;43:617–625.PubMedCrossRefGoogle Scholar
  14. 14.
    Kawahara M, Kammori M, Kanauchi H, et al. Immunohistochemical prognostic indicators of gastrointestinal carcinoid tumors. Eur J Surg Oncol. 2002;28:140–146.PubMedCrossRefGoogle Scholar
  15. 15.
    Sökmensër C, Gedikoglu G, Uzunalimoglu B. Importance of proliferation markers in gastrointestinal carcinoid tumors: a clinicopathologic study. Hepatogastroenterology. 2001;48:720–723.Google Scholar
  16. 16.
    Ghevariya V. Carcinoid tumors of the gastrointestinal tract. South Med J. 2009;102:1032–1040.PubMedCrossRefGoogle Scholar
  17. 17.
    Modlin IM, Kidd M, Latich I, et al. Current status of gastrointestinal carcinoids. Gastroenterology. 2005;128:1717–1751.PubMedCrossRefGoogle Scholar
  18. 18.
    Kulke MH, Kim H, Clark JW, et al. A phase II trial of gemcitabine for metastatic neuroendocrine tumors. Cancer. 2004;101:934–939.PubMedCrossRefGoogle Scholar
  19. 19.
    Oberg K, Norheim I, Lundqvist G, et al. Cytotoxic treatment in patients with malignant carcinoid tumors. Response to streptozocin—alone or in combination with 5-FU. Acta Oncol. 1987;26:429–432.PubMedCrossRefGoogle Scholar
  20. 20.
    Oberg K, Kvols L, Caplin M, et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15:966–973.PubMedCrossRefGoogle Scholar
  21. 21.
    Faiss S, Pape UF, Bohmig M, et al. Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors–the International Lanreotide and Interferon Alfa Study Group. J Clin Oncol. 2003;21:2689–2696.PubMedCrossRefGoogle Scholar
  22. 22.
    Kolby L, Persson G, Franzen S, Ahren B. Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg. 2003;90:687–693.PubMedCrossRefGoogle Scholar
  23. 23.
    Eriksson B. New drugs in neuroendocrine tumors: rising of new therapeutic philosophies. Curr Opin Oncol. 2010;22:381–386.PubMedCrossRefGoogle Scholar
  24. 24.
    Schnirer II, Yao JC, Ajani JA. Carcinoid—a comprehensive review. Acta Oncol. 2003;42:672–692.PubMedCrossRefGoogle Scholar
  25. 25.
    Modlin IM, Kidd M, Drozdov I, et al. Pharmacothearpy of neuroendocrine cancers. Expert Opin Pharmacother. 2008;9:2617–2626.PubMedCrossRefGoogle Scholar
  26. 26.
    Modlin IM, Pavel M, et al. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther. 2010;31:169–188.PubMedGoogle Scholar
  27. 27.
    Rinke A, Muller H, Schhade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–4663.PubMedCrossRefGoogle Scholar
  28. 28.
    Referenced with permission from The NCCN Clinical Practice Guidelines in Oncology™ for Neuroendocrine Tumors V.1.2011. ©National Comprehensive Cancer Network, Inc 2011. All rights reserved. Accessed July 1, 2011. To view the most recent and complete version of the guideline, go online to www.nccn.org. NATIONAL COMPREHENSIVE CANCER NETWORK®, NCCN®, NCCN GUIDELINES™, and all other NCCN Content are trademarks owned by the National Comprehensive Cancer Network, Inc.
  29. 29.
    Schmid HA, Schoeffter P. Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology. 2004;80:47–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Kvols L, Wiedenmann B, Oberg K, The SOM230 Carcinoid Study Group, 2006, et al. Safety and efficacy of pasireotide (SOM230) in patients with metastatic carcinoid tumors refractory or resistant to octreotide LAR: results of a phase II study. J Clin Oncol. 2006;24:198s.Google Scholar
  31. 31.
    Jaquet P, Gnerz G, Saveanu A, et al. Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH and prolactin secretion from GH-secreting pituitary adenoma classified as partially responsive to somatostatin analog therapy. Eur J Endocrinol. 2005;153:135–141.PubMedCrossRefGoogle Scholar
  32. 32.
    Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev. 2003;24:28–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Modlin IM, Moss SF, Chung DC, et al. Priorities for improving the management of gastroenteropancreatic neuroendocrine tumors. J Natl Cancer Inst. 2008;100:1282–1289.PubMedCrossRefGoogle Scholar
  34. 34.
    Grozinsky-Glasberg S, Franchi G, Teng M, et al. Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuro-endocrine tumour cell line. Neuroendocrinology. 2008;87:168–181.PubMedCrossRefGoogle Scholar
  35. 35.
    Yao JC, Phan A, Chang D, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low-to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26:4311–4318.PubMedCrossRefGoogle Scholar
  36. 36.
    Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28:69–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Yao JC, Ricci S, Winkler RE, Pavel ME. Everolimus plus octreotide LAR versus placebo plus octreotide LAR in patients with advanced neuroendocrine tumors (NET): updated safety and efficacy results from RADIANT-2. J Clin Oncol. 2011;29:4011.Google Scholar
  38. 38.
    Yao JC, Shah MH, Ito T. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–523.PubMedCrossRefGoogle Scholar
  39. 39.
    Terris B, Scoazec J, Rubbia L, et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumors. Histopathology. 1998;32:133–138.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang J, Jia Z, Li Q, et al. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer. 2007;109:1478–1486.PubMedCrossRefGoogle Scholar
  41. 41.
    Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting VEGF and PDGF receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327–337.PubMedGoogle Scholar
  42. 42.
    O’Farrell AM, Abrams TJ, Yuen HA, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003;101:3597–3605.PubMedCrossRefGoogle Scholar
  43. 43.
    Kulke M, Lenzy N, Meropol J, et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 2008;26:3403–3410.PubMedCrossRefGoogle Scholar
  44. 44.
    Raymond E, Raoul J, Niccoli P, et al. Phase III randomised, double-blind trial of sunitinib versus placebo in patients with progressive, well differentiated malignant islet cell tumours. 11th world congress on gastrointestinal cancer (ESMO 2009); Barcelona, Spain. 2009 June 30–July 03; Abtr 0013.Google Scholar
  45. 45.
    Niccoli P, Raoul J, Bang Y, et al. Updated safety and efficacy results of the phase III trial of sunitinib (SU) versus placebo (PBO) for treatment of pancreatic neuroendocrine tumors (NET). J Clin Oncol. 2010;28:4000.Google Scholar
  46. 46.
    Vinik A, Bang Y, Raoul J, et al. Patient-reported outcomes (PROs) in patients (pts) with pancreatic neuroendocrine tumors (NET) receiving sunitinib (SU) in a phase III trial. J Clin Oncol. 2010;28:4003.Google Scholar
  47. 47.
    Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–566.PubMedCrossRefGoogle Scholar
  48. 48.
    Kindmark H, Janson ET, Gustafsson B, et al. Five patients with malignant endocrine tumors tested with imatinib mesylate (Gleevec). Acta Oncol. 2010;49:100–101.PubMedCrossRefGoogle Scholar
  49. 49.
    Yao J, Zhang J, Rashid A, et al. Clinical and in vitro studies of imatinib in advanced carcinoid tumors. Clin Cancer Res. 2007;13:234–240.PubMedCrossRefGoogle Scholar
  50. 50.
    Hobday TJ, Rubin J, Holen K, et al. MCO44h, a phase II trial of sorafenib in patients with metastatic neuroendocrine tumors (NET): a phase II consortium (P2C) study. J Clin Oncol. 2007;25:4504.CrossRefGoogle Scholar
  51. 51.
    Yao J, Phan P, Hoss H, et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol. 2008;26:1316–1323.PubMedCrossRefGoogle Scholar
  52. 52.
    Yao JC, Phan AT, Fogleman D, et al. Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J Clin Oncol. 2010;28:4002.CrossRefGoogle Scholar
  53. 53.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–4085.PubMedCrossRefGoogle Scholar
  54. 54.
    Varker KA, Campbell J, Shah MH. Phase II study of thalidomide in patients with metastatic carcinoid and islet cell tumors. Cancer Chemother Pharmacol. 2008;61:661–668.PubMedCrossRefGoogle Scholar
  55. 55.
    Sung M, Kvols L, Wolin E, et al. Phase II proof-of-concept study of atiprimoid in patients with advanced low-to intermediate-grade neuroendocrine carcinoma. J Clin Oncol. 2008;26:4611.Google Scholar
  56. 56.
    Tolcher A, Rothenberg M, Rodon J, et al. A phase I pharmakinetic and pharmacodynamic study of AMG 479, a fully monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-IR) in advanced solid tumors. J Clin Oncol. 2007;25:3002.CrossRefGoogle Scholar
  57. 57.
    Anthony L, Chester M, Michael S, et al. Phase II open-label clinical trial of vatalanib (PTK/ZK) in patients with progressive neuroendocrine cancer. J Clin Oncol. 2008;26:14624.Google Scholar
  58. 58.
    Pavel M, Bartel C, Henck F, et al. Open-label, nonrandomized, multicenter phase II study evaluating the angiogenesis inhibitor PTK787/ZK222584 (PTK/ZK) in patients with advanced neuroendocrine carcinomas (NEC). J Clin Oncol. 2008;26:14684.Google Scholar
  59. 59.
    Forrer F, Valkema R, Kwekkeboom DJ, de Jong M, Krenning EP. Neuroendocrine tumors. Peptide receptor radionuclide therapy. Best Pract Res Clin Endocrinol Metab. 2007;21:111–129.PubMedCrossRefGoogle Scholar
  60. 60.
    Valkema R, Pauwels S, Kvols LK, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3] octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2006;36:147–156.PubMedCrossRefGoogle Scholar
  61. 61.
    Kwekkeboom D, de Herder W, Kam B, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTAO, Tyr3] octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–2130.PubMedCrossRefGoogle Scholar
  62. 62.
    Cwikla JB, Sankowski A, Seklecka N, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21:787–794.PubMedCrossRefGoogle Scholar
  63. 63.
    Kennedy AS, Dezarn WA, Mc Neillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Ann J Clin Oncol. 2008;31:271–279.CrossRefGoogle Scholar
  64. 64.
    Ekeblad S, Sundin A, Welin S, et al. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res. 2007;13:2986–2991.PubMedCrossRefGoogle Scholar
  65. 65.
    Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol. 2006;24:401–406.PubMedCrossRefGoogle Scholar
  66. 66.
    Kunz PL, Kuo T, Zahn JM, et al. A phase II study of capecitabine, oxaliplatin, and bevacizumab for metastatic or unresectable neuroendocrine tumors. J Clin Oncol. 2010;28(15 Suppl):4104.Google Scholar
  67. 67.
    Papouchado B, Erickson LA, Rohlinger AL, et al. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Pathol. 2005;18:1329–1335.PubMedCrossRefGoogle Scholar
  68. 68.
    Hobday TJ, Holen K, Donehower R, et al. A phase II trial of gefitinib in patients (pts) with progressive metastatic neuroendocrine tumors (NET): A Phase II Consortium (P2C) study. J Clin Oncol. 2006;24:4043.CrossRefGoogle Scholar
  69. 69.
    O’Reilly M, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277–285.PubMedCrossRefGoogle Scholar
  70. 70.
    Zatterstrom U, Felbor U, Fukai N, et al. Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct Funct. 2000;25:97–101.PubMedCrossRefGoogle Scholar
  71. 71.
    Kulke MH, Bergsland EK, Ryan DP, et al. Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol. 2006;24:3555–3561.PubMedCrossRefGoogle Scholar
  72. 72.
    Kulke MH, Siu LL, Tepper JE, et al. Future directions in the treatment of neuroendocrine tumors: consensus report of the national cancer institute neuroendocrine tumor clinical trials planning meeting. J Clin Oncol. 2011;29:934–943.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. D. Miljković
    • 1
  • M. Girotra
    • 1
  • R. R. Abraham
    • 1
  • R. B. Erlich
    • 2
  1. 1.Department of MedicineJohns Hopkins University/Sinai Hospital Program in Internal MedicineBaltimoreUSA
  2. 2.Medical OncologyGeisinger HealthWilkes-BarreUSA

Personalised recommendations