Digestive Diseases and Sciences

, Volume 56, Issue 12, pp 3439–3449 | Cite as

Mechanisms Linking Nonalcoholic Fatty Liver Disease with Coronary Artery Disease

  • W. Nseir
  • A. Shalata
  • A. Marmor
  • N. AssyEmail author


The most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is coronary artery disease (CAD), not chronic liver disease. Fatty liver increases cardiovascular risk by classical (dyslipidemia, hypertension, diabetes) and by less conventional mechanisms. Common pathways involved in the pathogenesis of fatty liver and CAD includes hepatic insulin resistance and sub clinical inflammation. The hepatic insulin resistance state of fatty liver infiltration is characterized by increased FFA, which causes lipotoxicity and impairs endothelium-dependent vasodilatation, increases oxidative stress, and has a cardio toxic effect. Additional metabolic risk factors include leptin, adiponectin, pro inflammatory cytokines [such as IL-6, C-reactive protein and plasminogen activator inhibitor-1 (PAI-1)], which together lead to increased oxidative stress and endothelial dysfunction, finally promoting coronary artery disease (CAD). When classical risk factors are superimposed on fatty liver accumulation, they may further increase the new metabolic risk factors, exacerbating CAD. The clinical implication is that patients with NAFLD are at higher risk (steatohepatitis, diabetes, obesity, atherogenic dyslipidemia) and should undergo periodic cardiovascular risk assessment including the Framingham score, cardiac effort test, and measurement of intimae-media thickening of the carotids arteries. This may improve risk stratification for CAD.


Fatty liver Cardiovascular disease Coronary artery diseases Mechanism NAFLD Steatohepatitis 


Financial disclosure

The authors state they have no financial disclosure to declare.


  1. 1.
    Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.PubMedCrossRefGoogle Scholar
  2. 2.
    Targher G, Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis. 2007;191:235–240.PubMedCrossRefGoogle Scholar
  3. 3.
    Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;4:917–923.CrossRefGoogle Scholar
  4. 4.
    Younossi Z, Diehl AM, Ong JP. Nonalcoholic fatty liver disease: an agenda for clinical research. Hepatology. 2002;35:746–752.PubMedCrossRefGoogle Scholar
  5. 5.
    Caldwell S, Argo C. The natural history of non-alcoholic fatty liver disease. Dig Dis. 2010;28:162–168.PubMedCrossRefGoogle Scholar
  6. 6.
    Petersen KF, Dufour S, Hariri A, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362:1082–1089.PubMedCrossRefGoogle Scholar
  7. 7.
    Gami AS, Witt BJ, Howard DE, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systemic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007;30:403–414.CrossRefGoogle Scholar
  8. 8.
    Ford ES, Schulze MB, Pischon T, Bergmann MM, Joost HG, Boeing H. Metabolic syndrome and risk of incident diabetes: findings from the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Cardiovasc Diabetol. 2008;7:35.PubMedCrossRefGoogle Scholar
  9. 9.
    Ford ES, Li C, Sattar N. Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care. 2008;9:1898–1904.CrossRefGoogle Scholar
  10. 10.
    Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;21:2709–2716.CrossRefGoogle Scholar
  11. 11.
    Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–689.PubMedCrossRefGoogle Scholar
  12. 12.
    Malik S, Wong ND, Franklin SS, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;10:1245–1250.CrossRefGoogle Scholar
  13. 13.
    Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–1395.PubMedCrossRefGoogle Scholar
  14. 14.
    Sagi R, Reif S, Neuman G, Webb M, Phillip M, Shalitin S. Nonalcoholic fatty liver disease in overweight children and adolescents. Acta Paediatr. 2007;96:1209–1213.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamaguchi M, Kojima T, Takeda N, et al. Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease. World J Gastroenterol. 2007;13:1579–1584.PubMedGoogle Scholar
  16. 16.
    Abid A, Taha O, Nseir W, Farah R, Grosovski M, Assy N. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J Hepatol. 2009;51:918–924.PubMedCrossRefGoogle Scholar
  17. 17.
    Targher G, Bertolini L, Padovani R, Zenari L, Zoppini G, Falezza G. Relation of nonalcoholic hepatic steatosis to early carotid atherosclerosis in healthy men: role of visceral fat accumulation. Diabetes Care. 2004;10:2498–2500.CrossRefGoogle Scholar
  18. 18.
    Brea A, Mosquera D, Martin E, Arizti A, Cordero JL, Ros E. Nonalcoholic fatty liver disease is associated with carotid atherosclerosis: a case-control study. Arterioscler Thromb Vasc Biol. 2005;5:1040–1050.Google Scholar
  19. 19.
    Lin YC, Lo HM, Chen JD. Sonographic fatty liver, overweight and ischemic heart disease. World J Gastroenterol. 2005;11:4838–4842.PubMedGoogle Scholar
  20. 20.
    Villanova N, Moscatiello S, Ramilli S, et al. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology. 2005;2:473–480.CrossRefGoogle Scholar
  21. 21.
    Schindhelm RK, Diamant M, Bakker SJ, et al. Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus. Eur J Clin Invest. 2005;6:369–374.CrossRefGoogle Scholar
  22. 22.
    Targher G, Bertolini L, Padovani R, et al. Increased prevalence of cardiovascular disease in Type 2 diabetic patients with non-alcoholic fatty liver disease. Diabet Med. 2006;23:403–409.PubMedCrossRefGoogle Scholar
  23. 23.
    Targher G, Bertolini L, Padovani R, et al. Relation between carotid artery wall thickness and liver histology in subjects with nonalcoholic fatty liver disease. Diabetes Care. 2006;29:1325–1330.PubMedCrossRefGoogle Scholar
  24. 24.
    Akabame S, Hamaguchi M, Tomiyasu K, et al. Evaluation of vulnerable coronary plaques and non-alcoholic fatty liver disease (NAFLD) by 64-detector multislice computed tomography (MSCT). Circ J. 2008;72:618–625.PubMedCrossRefGoogle Scholar
  25. 25.
    Assy N, Djibre A, Farah R, Grosovski M, Marmor A. Presence of coronary plaques in patients with nonalcoholic fatty liver disease. Radiology. 2010;254:393–400.PubMedCrossRefGoogle Scholar
  26. 26.
    Pacifico L, Cantisani V, Ricci P, et al. Nonalcoholic fatty liver disease and carotid atherosclerosis in children. Paediatr Res. 2008;63:423–427.CrossRefGoogle Scholar
  27. 27.
    Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;1:113–121.CrossRefGoogle Scholar
  28. 28.
    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;6:1413–1419.CrossRefGoogle Scholar
  29. 29.
    Targher G, Bertolini L, Poli F, et al. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes. 2005;54:3541–3546.PubMedCrossRefGoogle Scholar
  30. 30.
    Targher G, Bertolini L, Rodella S, et al. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care. 2007;8:2119–2121.CrossRefGoogle Scholar
  31. 31.
    Dunn W, Xu R, Wingard DL, et al. Suspected nonalcoholic fatty liver disease and mortality risk in a population-based cohort study. Am J Gastroenterol. 2008;9:2263–2271.CrossRefGoogle Scholar
  32. 32.
    Ruttmann E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation. 2005;14:2130–2137.CrossRefGoogle Scholar
  33. 33.
    Lee DS, Evans JC, Robins SJ, et al. Gamma glutamyl transferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2007;1:127–133.CrossRefGoogle Scholar
  34. 34.
    Ekstedt M, Franzen LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;40:865–873.CrossRefGoogle Scholar
  35. 35.
    Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J Hepatol. 2008;49:608–612.PubMedCrossRefGoogle Scholar
  36. 36.
    Soderberg C, Stal P, Askling J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;2:595–602.CrossRefGoogle Scholar
  37. 37.
    Park SH, Kim BI, Yun JW, et al. Insulin resistance and C-reactive protein as independent risk factors for non-alcoholic fatty liver disease in non-obese Asian men. J Gastroenterol Hepatol. 2004;6:694–698.CrossRefGoogle Scholar
  38. 38.
    Lee S, Jin Kim Y, Yong Jeon T, et al. Obesity is the only independent factor associated with ultrasound-diagnosed non-alcoholic fatty disease: a cross-sectional case-control study. Scand J Gastroenterol. 2006;51:566–572.CrossRefGoogle Scholar
  39. 39.
    Hirsch S, Poniachick J, Avendano M, et al. Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition. 2005;2:137–141.CrossRefGoogle Scholar
  40. 40.
    Assy N, Bekirov I, Mejritsky Y, Solomon L, Szvalb S, Hussein O. Association between thrombotic risk factors and extent of fibrosis in patients with non-alcoholic fatty liver diseases. World J Gastroenterol. 2005;37:5834–5839.Google Scholar
  41. 41.
    Sookoian S, Castano GO, Burgueno AL, et al. Circulating levels and hepatic expression of molecular mediators of atherosclerosis in nonalcoholic fatty liver disease. Atherosclerosis. 2010;2:585–591.CrossRefGoogle Scholar
  42. 42.
    Ruhl CE, Everhart JE. Epidemiology of nonalcoholic fatty liver. Clin Liver Dis. 2004;3:501–519.CrossRefGoogle Scholar
  43. 43.
    Carulli L, Lonardo A, Lombardini S, Marchesini G, Loria P. Gender, fatty liver and GGT. Hepatology. 2006;44:278–279.PubMedCrossRefGoogle Scholar
  44. 44.
    Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health. 1987;8:253–287.PubMedCrossRefGoogle Scholar
  45. 45.
    Hsieh SD, Yoshinaga H, Muto T, Sakurai Y. Regular physical activity and coronary risk factors in Japanese men. Circulation. 1998;97:661–665.PubMedGoogle Scholar
  46. 46.
    Church TS, Kuk JL, Ross R, Priest EL, Biltoft E, Blair SN. Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease. Gastroenterology. 2006;7:2023–2030.CrossRefGoogle Scholar
  47. 47.
    Zelber-Sagi S, Nitzan-Kaliski D, Goldsmith R, et al. Role of leisure-time physical activity in alcoholic fatty liver disease: a population-based study. Hepatology. 2008;48:1791–1798.PubMedCrossRefGoogle Scholar
  48. 48.
    Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–444.PubMedCrossRefGoogle Scholar
  49. 49.
    Adlerberth AM, Rosengren A, Wilhelmsen L. Diabetes and long-term risk of mortality from coronary and other causes in middle-aged Swedish men. A general population study. Diabetes Care. 1998;21:539–545.PubMedCrossRefGoogle Scholar
  50. 50.
    De Marco R, Locatelli F, Zoppini G, Verlato G, Bonora E, Muggeo M. Cause-specific mortality in type 2 diabetes. The Verona Diabetes Study. Diabetes Care. 1999;22:756–761.PubMedCrossRefGoogle Scholar
  51. 51.
    Marchesini G, Marzocchi R, Agostini F, Bugianesi E. Nonalcoholic fatty liver disease and metabolic syndrome. Curr Opin Lipidol. 2005;16:421–427.PubMedCrossRefGoogle Scholar
  52. 52.
    Hanley AJ, Williams K, Festa A, et al. Insulin resistance atherosclerosis study. Diabetes. 2004;53:2623–2632.PubMedCrossRefGoogle Scholar
  53. 53.
    Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart continues and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 1986;256:2823–2828.PubMedCrossRefGoogle Scholar
  54. 54.
    Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk G. Fatty infiltration of liver in hyperlipidemic patients. Dig Dis Sci. 2000;45:1929–1934.PubMedCrossRefGoogle Scholar
  55. 55.
    Clark JM, Diehl AM. Nonalcoholic fatty liver disease: an underrecognized cause of cryptogenic cirrhosis. JAMA. 2003;289:3000–3004.PubMedCrossRefGoogle Scholar
  56. 56.
    Radu C, Grigoriscu M, Crisan D, Lupsor M, Constantin D, Dina L. Prevalence and associated risk factors of non-alcoholic fatty liver disease in hospitalized patients. J Gastrointestin Liver Dis. 2008;17:255–260.PubMedGoogle Scholar
  57. 57.
    Rabkin SW, Mathewson FA, Hsu PH. Relation of body weight to development of ischemic heart disease in a cohort of young North American men after a 26 year of observation period: the Manitoba study. Am J Cardiol. 1977;39:452–458.PubMedCrossRefGoogle Scholar
  58. 58.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–977.PubMedCrossRefGoogle Scholar
  59. 59.
    Ruhl CE, Everhart JE. Determination of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology. 2003;124:71–79.PubMedCrossRefGoogle Scholar
  60. 60.
    Marcos A, Fisher RA, Ham JM, et al. Selection and outcome of living donors for adult-to-adult right lobe transplantation. Transplantation. 2000;69:2410–2415.PubMedCrossRefGoogle Scholar
  61. 61.
    Hilden M, Christoffersen P, Juhl E, Dalgaard JB. Liver histology in a ‘normal’ population- examination of 503 consecutive fatal traffic casualties. Scand J Gastroenterol. 1977;12:593–597.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee RG. Nonalcoholic steatohepatitis a study of 49 patients. Hum Pathol. 1989;20:594–598.PubMedCrossRefGoogle Scholar
  63. 63.
    Gholam PM, Kotler DP, Flancbaum LJ. Liver pathology in morbidity obese patients undergoing Roux-en-Y gastric bypass surgery. Obes Surg. 2000;12:49–51.CrossRefGoogle Scholar
  64. 64.
    Neal B, MacMahon S, Chapman N. Effects of ACE inhibitors, calcium antagonists, and other blood pressure-lowering drugs. Lancet. 2000;356:1955–1964.PubMedCrossRefGoogle Scholar
  65. 65.
    Donati G, Stagni B, Piscaglia F, et al. Increased prevalence of fatty liver in arterial hypertensive patients with normal liver enzymes: role of insulin resistance. Gut. 2004;53:1020–1023.PubMedCrossRefGoogle Scholar
  66. 66.
    Yokohama S, Yoneda M, Haneda M, et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology. 2004;40:1222–1225.PubMedCrossRefGoogle Scholar
  67. 67.
    Day CP. Non-alcoholic steatohepatitis (NASH): where are we now and where are we going? Gut. 2002;50:585–588.PubMedCrossRefGoogle Scholar
  68. 68.
    Yang S, Zhu H, Gabrielson K, Trush MA, Diehl AM. Mitochondrial adaptation to obesity-related oxidant stress. Arch Biochem Biophys. 2000;378:259–268.PubMedCrossRefGoogle Scholar
  69. 69.
    Leclercq IA, Farrel GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000;105:1067–1075.PubMedCrossRefGoogle Scholar
  70. 70.
    Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver disease. J Hepatol. 2002;37:56–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Chalasani N, Deeg MA, Crabb DW. Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2004;99:1497–1502.PubMedCrossRefGoogle Scholar
  72. 72.
    Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanism. Oxidation, inflammation, and genetics. Circulation. 1995;91:2488–2496.PubMedGoogle Scholar
  73. 73.
    Schulz E, Anter E, Keaney JF. Oxidative stress, antioxidants, and endothelial function. Curr Med Chem. 2004;11:1093–1104.PubMedGoogle Scholar
  74. 74.
    Ahmed MH, Byrne CD. Obstructive sleep apnea syndrome and fatty liver: association or causal link? World J Gastroenterol. 2010;16:4243–4252.PubMedCrossRefGoogle Scholar
  75. 75.
    Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42:987–1000.PubMedCrossRefGoogle Scholar
  76. 76.
    Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87:3023–3028.PubMedCrossRefGoogle Scholar
  77. 77.
    Bonora E, Formentini G, Calcaterra F, et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care. 2002;25:1135–1141.PubMedCrossRefGoogle Scholar
  78. 78.
    Pilz S, Scharnagl H, Tiran B, et al. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin Endocrinol Metab. 2006;91:2542–2547.PubMedCrossRefGoogle Scholar
  79. 79.
    Stefan N, Kantartzis K, Ulrich Häring H. Causes and metabolic consequences of fatty liver. Endocrine Reviews. 2008;29:939–960.PubMedCrossRefGoogle Scholar
  80. 80.
    Targher G, Bertolini L, Scala L, Zoppini G, Zenari L, Falezza G. Non-alcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med. 2005;22:1354–1358.PubMedCrossRefGoogle Scholar
  81. 81.
    Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103:1372–1379.PubMedCrossRefGoogle Scholar
  82. 82.
    Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000;101:2149–2153.PubMedGoogle Scholar
  83. 83.
    Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767–1772.PubMedGoogle Scholar
  84. 84.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Eng J Med. 2000;342:836–843.CrossRefGoogle Scholar
  85. 85.
    Toss H, Lindahl B, Siegbahn A, Wallentin L. Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. FRISC Study Group. Fragmin during instability in coronary artery disease. Circulation. 1997;96:4204–4210.PubMedGoogle Scholar
  86. 86.
    Rebuzzi AG, Quaranta G, Liuzzo G, et al. Incremental prognosis value of serum levels of troponin T and C-reactive protein on admission in patients with unstable angina pectoris. Am J Cardiol. 1998;82:715–719.PubMedCrossRefGoogle Scholar
  87. 87.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–1801.PubMedCrossRefGoogle Scholar
  88. 88.
    Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–880.PubMedCrossRefGoogle Scholar
  89. 89.
    Day CP. From fat to inflammation. Gastroenterology. 2006;130:207–210.PubMedCrossRefGoogle Scholar
  90. 90.
    Marra F, Svegliati Gastaldelli A, Baroni G, Tell C, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14:72–81.PubMedCrossRefGoogle Scholar
  91. 91.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–874.PubMedCrossRefGoogle Scholar
  92. 92.
    Ridker PM, Danielson E, Fonseca FA, et al. JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–2207.PubMedCrossRefGoogle Scholar
  93. 93.
    Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology. 2004;40:46–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Kumada M, Kihara S, Ouchi N, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 2004;109:2046–2049.PubMedCrossRefGoogle Scholar
  95. 95.
    Kobayashi H, Ouchi N, Kihara S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004;94:e27–e31.PubMedCrossRefGoogle Scholar
  96. 96.
    Schram K, Sweeney G. Implications of myocardial matrix remodeling by adipokines in obesity-related heart failure. Trends Cardiovasc Med. 2008;18:199–205.PubMedCrossRefGoogle Scholar
  97. 97.
    Perseghin G, Lattuada G, De Cobelli F, et al. Increased mediastinal fat and impaired left ventricular energy metabolism in young men with newly found fatty liver. Hepatology. 2008;47:51–58.PubMedCrossRefGoogle Scholar
  98. 98.
    Taskinen MR. Lipoprotein lipase in diabetes. Diabetes Metab Rev. 1987;3:551–570.PubMedCrossRefGoogle Scholar
  99. 99.
    Verges B. New insight into the pathophysiology of lipid abnormalities in type 2 diabetes. Diabetes Metab. 2005;31:429–439.PubMedCrossRefGoogle Scholar
  100. 100.
    Frenais R, Nazih H, Ouguerram K, et al. In vivo evidence for the role of lipoprotein lipase activity in the regulation of Apolipoprotein AI metabolism: a kinetic study in control subjects and patients with type II diabetes mellitus. J Clin Endocrinol Metab. 2001;86:1962–1967.PubMedCrossRefGoogle Scholar
  101. 101.
    Adiels M, Taskinen MR, Packard C, et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49:755–765.PubMedCrossRefGoogle Scholar
  102. 102.
    Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. J Am Med Assoc. 1996;276:875–881.CrossRefGoogle Scholar
  103. 103.
    Kwiterovich PO. Clinical relevance of the biochemical, metabolic, and genetic factors that influence low-density lipoprotein heterogeneity. Am J Cardiol. 2002;90:30i–47i.PubMedCrossRefGoogle Scholar
  104. 104.
    Adiels M, Olofsson SO, Taskinen MR, Boren J. Diabetic dyslipidemia. Curr Opin Lipidol. 2006;17:238–246.PubMedCrossRefGoogle Scholar
  105. 105.
    Cassader M, Gambino R, Musso G, et al. Postprandial triglyceride-rich lipoprotein metabolism and insulin sensitivity in nonalcoholic steatohepatitis patients. Lipids. 2001;36:1117–1124.PubMedCrossRefGoogle Scholar
  106. 106.
    Roche HM, Gibney MJ. The impact of postprandial lipemia in accelerating atherothrombosis. J Cardiovasc Risk. 2000;7:317–324.PubMedGoogle Scholar
  107. 107.
    Tanaka A. Postprandial hyperlipidemia and atherosclerosis. J Atheroscler Thromb. 2004;11:322–329.PubMedCrossRefGoogle Scholar
  108. 108.
    Brown ML, Ramprassad MP, Umeda PK, et al. A macrophage receptor for apolipoprotein B48: cloning, expression, and atherosclerosis. Proc Natl Acad Sci USA. 2000;97:7488–7493.PubMedCrossRefGoogle Scholar
  109. 109.
    Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose- sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensivity in overweight/obese humans. J Clin Invest. 2009;119:1322–1334.PubMedCrossRefGoogle Scholar
  110. 110.
    Musso G, Gambino R, Durazzo M, et al. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology. 2005;42:1175–1183.PubMedCrossRefGoogle Scholar
  111. 111.
    Musso G, Gambino R, De Michieli F, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003;37:909–916.PubMedCrossRefGoogle Scholar
  112. 112.
    Musso G, Gambino R, De Michieli F, Durazzo M, Pagano G, Cassader M. Adiponectin gene polymorphisms modulate acute adiponectin responses to dietary fat: possible pathogenetic role in NASH. Hepatology. 2008;47:1167–1177.PubMedCrossRefGoogle Scholar
  113. 113.
    Bastelica D, Morange P, Berthet B, et al. Stromal cells are the main plasminogen activator inhibitor-1-producing cells in human fat: evidence of differences between visceral and subcutaneous deposits. Arterioscler Thromb Vasc Biol. 2002;22:173–178.PubMedCrossRefGoogle Scholar
  114. 114.
    Fan JG, Chen LH, Xu ZJ, Zeng MD. Overexpression of hepatic plasminogen activator inhibitor type 1 mRNA in rabbits with fatty liver. World J Gastroenterol. 2001;7:710–712.PubMedGoogle Scholar
  115. 115.
    Esmon CT. The interactions between inflammation and coagulation. Br J Haematol. 2005;131:417–430.PubMedCrossRefGoogle Scholar
  116. 116.
    Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implication for the metabolic syndrome and atherothrombosis. Circulation. 2003;107:398–404.PubMedCrossRefGoogle Scholar
  117. 117.
    Targher G. Non-alcoholic fatty liver disease and cardiovascular disease. Curr Cardio Risk Rep. 2010;4:32–39.CrossRefGoogle Scholar
  118. 118.
    Kantartzis K, Thamer C, Peter A, et al. High cardiorespiratory fitness is a an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut. 2009;58:1281–1288.PubMedCrossRefGoogle Scholar
  119. 119.
    Promrat K, Kleiner DE, Niemeier HM, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51:121–129.PubMedCrossRefGoogle Scholar
  120. 120.
    Assy N, Nassar F, Nasser G, Grosovski M. Olive oil consumption and non-alcoholic fatty liver disease. World J Gastroenterol. 2009;15:1809–1815.PubMedCrossRefGoogle Scholar
  121. 121.
    Estruch R, Martinez-Gonzalez MA, Corella D, et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med. 2008;22:2449–2458.Google Scholar
  122. 122.
    Nseir W, Nassar F, Assy N. Soft drinks consumption and nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16:2579–2588.PubMedCrossRefGoogle Scholar
  123. 123.
    Dunn W, Xu R, Schwimmer JB. Modest wine drinking and decreased prevalence of suspected nonalcoholic fatty liver disease. Hepatology. 2008;47:1947–1954.PubMedCrossRefGoogle Scholar
  124. 124.
    Yilmaz Y. Systematic review: caspase-cleaved fragments of cytokeratin 18—the promises and challenges of a biomarker for chronic liver disease. Aliment Pharmacol Ther. 2009;30:1103–1109.PubMedCrossRefGoogle Scholar
  125. 125.
    Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–854.PubMedCrossRefGoogle Scholar
  126. 126.
    Hwang ST, Cho YK, Yun JW, Park JH, Kim HJ, Park DI, et al. Impact of NAFLD on microalbuminuria in patients with prediabetes and diabetes. Intern Med J. 2010;40:437–442.Google Scholar
  127. 127.
    Wong VW, Wong GL, Tsang SW, Fan T, Chu WC, Woo J, Chan AW, Choi PC, Chim AM, Lau JY, Chan FK, Sung JJ, Chan HL. High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. Gut. 2011;60:829–836Google Scholar
  128. 128.
    Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N. Metformin in non-alcoholic steatohepatitis. Lancet. 2001;9285:893–894.CrossRefGoogle Scholar
  129. 129.
    Promrat K, Lutchman G, Uwaifo GI, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology. 2004;1:188–196.CrossRefGoogle Scholar
  130. 130.
    Paradis V, Perlemuter G, Bonvoust F, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology. 2001;34:738–744.PubMedCrossRefGoogle Scholar
  131. 131.
    Klonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin. 2008;1:275–286.Google Scholar
  132. 132.
    Balaban YH, Korkusuz P, Simsek H, et al. Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol. 2007;4:242–250.Google Scholar
  133. 133.
    Antonopoulos S, Mikros S, Mylonopoulou M, Kokkoris S, Giannoulis G. Rosuvastatin as a novel treatment of non-alcoholic fatty liver disease in hyperlipidemic patients. Atherosclerosis. 2006;1:233–234.CrossRefGoogle Scholar
  134. 134.
    Gomez-Dominguez E, Gisbert JP, Moreno-Monteagudo JA, García-Buey L, Moreno-Otero R. A pilot study of atorvastatin treatment in dyslipemid, non-alcoholic fatty liver patients. Aliment Pharmacol Ther. 2006;11:1643–1647.CrossRefGoogle Scholar
  135. 135.
    Browning JD. Stains and hepatic steatosis: perspectives from the Dallas Heart Study. Hepatology. 2006;44:466–471.PubMedCrossRefGoogle Scholar
  136. 136.
    Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34:745–750.PubMedCrossRefGoogle Scholar
  137. 137.
    Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol. 2009;8:942–954.CrossRefGoogle Scholar
  138. 138.
    Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–1685.PubMedCrossRefGoogle Scholar
  139. 139.
    Masterton GS, Plevris JN, Hayes PC. Review article: omega-3 fatty acids—a promising novel therapy for non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2010;7:679–692.CrossRefGoogle Scholar
  140. 140.
    Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.PubMedGoogle Scholar
  141. 141.
    Leuschner UF, Lindenthal B, Herrmann G, et al. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology. 2010;52:472–479.PubMedCrossRefGoogle Scholar
  142. 142.
    Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med. 2010;363:1341–1350.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Internal MedicineHoly Family HospitalNazarethIsrael
  2. 2.Liver UnitZiv Medical CenterSafed, Upper GalileeIsrael
  3. 3.Department of CardiologyZiv Medical CenterSafedIsrael
  4. 4.Faculty of MedicineTechnionHaifaIsrael

Personalised recommendations