Skip to main content

Advertisement

Log in

Small Intestinal Bacterial Overgrowth in Nonalcoholic Steatohepatitis: Association with Toll-Like Receptor 4 Expression and Plasma Levels of Interleukin 8

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Experimental and clinical studies suggest an association between small intestinal bacterial overgrowth (SIBO) and nonalcoholic steatohepatitis (NASH). Liver injury and fibrosis could be related to exposure to bacterial products of intestinal origin and, most notably, endotoxin, including lipopolysaccharide (LPS).

Aim

To compare the prevalence of SIBO and its relationships to LPS receptor levels and systemic cytokines in NASH patients and healthy control subjects.

Methods

Eighteen NASH patients (eight males) and 16 age-matched and gender-matched healthy volunteers were studied. SIBO was assessed by the lactulose breath hydrogen test (LHBT), plasma lipopolysaccharide binding protein (LBP) levels by ELISA, and expression (as a percentage) of TLR-2 and 4 on CD14-positive cells by flow cytometry. Pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) were measured in plasma.

Results

SIBO was more common in NASH patients than control subjects (77.78% vs. 31.25%; P < 0.0001). LBP levels and TLR-2 expression were similar in both groups, TLR-4/MD-2 expression on CD14 positive cells was higher among NASH patients: expression, mean ± SEM, NASH vs. control: 20.95 ± 2.91% vs. 12.73 ± 2.29%, P < 0.05. Among the examined cytokines, only IL-8 levels were significantly higher in patients than control (P = 0.04) and correlated positively with TLR-4 expression (r = 0.5123, P = 0.036).

Conclusion

NASH patients have a higher prevalence of small intestinal bacterial overgrowth which is associated with enhanced expression of TLR-4 and release of IL-8. SIBO may have an important role in NASH through interactions with TLR-4 and induction of the pro-inflammatory cytokine, IL-8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–1419.

    PubMed  CAS  Google Scholar 

  2. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.

    PubMed  Google Scholar 

  3. Maeda T, Hashimoto K, Kihara Y, et al. Surgically resected hepatocellular carcinomas in patients with non-alcoholic steatohepatitis. Hepatogastroenterology. 2008;55:1404–1406.

    PubMed  Google Scholar 

  4. Day CP, James O. Steatohepatitis: A tale of two “hits”? Gastroenterology. 1998;114:842–845.

    PubMed  CAS  Google Scholar 

  5. Day CP. Non-alcoholic steatohepatitis (NASH): Where are we now and where are we going? Gut. 2002;50:585–588.

    PubMed  CAS  Google Scholar 

  6. Namikawa C, Zhang H, Toi M. Non-alcoholic steatohepatitis: Pathology and pathogenesis. Nippon Rinsho. 2006;64:1107–1113.

    PubMed  Google Scholar 

  7. Nazim M, Stamp G, Hodgson HJ. Non-alcoholic steatohepatitis associated with small intestinal diverticulosis and bacterial overgrowth. Hepatogastroenterology. 1989;36:349–351.

    PubMed  CAS  Google Scholar 

  8. Zhao LF, Jia JM, Han DW. The role of enterogenous endotoxemia in the pathogenesis of non-alcoholic steatohepatitis. Zhonghua Gan Zang Bing Za Zhi. 2004;12:632.

    PubMed  CAS  Google Scholar 

  9. Fu JF, Fang YL, Liang L, et al. A rabbit model of pediatric nonalcoholic steatohepatitis: The role of adiponectin. World J Gastroenterol. 2009;15:912–918.

    PubMed  CAS  Google Scholar 

  10. Soza A, Riquelme A, Gonzalez R, et al. Increased orocecal transit time in patients with nonalcoholic fatty liver disease. Dig Dis Sci. 2005;50:1136–1140.

    PubMed  Google Scholar 

  11. Fan JG, Xu ZJ, Wang GL. Effect of lactulose on establishment of a rat non-alcoholic steatohepatitis model. World J Gastroenterol. 2005;11:5053–5056.

    PubMed  CAS  Google Scholar 

  12. Wigg AJ, Roberts-Thomson IC, Dymock RB, et al. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48:206–211.

    PubMed  CAS  Google Scholar 

  13. Riordan SM, McIver CJ, Williams R. Liver damage in human small intestinal bacterial overgrowth. Am J Gastroenterol. 1998;93:234–237.

    PubMed  CAS  Google Scholar 

  14. Wu WC, Zhao W, Li S. Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats. World J Gastroenterol. 2008;14:313–317.

    PubMed  Google Scholar 

  15. Cuoco L, Montalto M, Jorizzo RA, et al. Eradication of small intestinal bacterial overgrowth and oro-cecal transit in diabetics. Hepatogastroenterology. 2002;49:1582–1586.

    PubMed  Google Scholar 

  16. Basilisco G, Camboni G, Bozzani A, et al. Orocecal transit delay in obese patients. Dig Dis Sci. 1989;34:509–512.

    PubMed  CAS  Google Scholar 

  17. Sabate JM, Jouet P, Harnois F, et al. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: A contributor to severe hepatic steatosis. Obes Surg. 2008;18:371–377.

    PubMed  Google Scholar 

  18. Pilotto A, Franceschi M, Del Favero G, et al. The effect of aging on oro-cecal transit time in normal subjects and patients with gallstone disease. Aging (Milano). 1995;7:234–237.

    CAS  Google Scholar 

  19. Elphick DA, Chew TS, Higham SE, et al. Small bowel bacterial overgrowth in symptomatic older people: Can it be diagnosed earlier? Gerontology. 2005;51:396–401.

    PubMed  CAS  Google Scholar 

  20. Madrid AM, Cumsille F, Defilippi C. Altered small bowel motility in patients with liver cirrhosis depends on severity of liver disease. Dig Dis Sci. 1997;42:738–742.

    PubMed  CAS  Google Scholar 

  21. Chesta J, Defilippi C, Defilippi C. Abnormalities in proximal small bowel motility in patients with cirrhosis. Hepatology. 1993;17:828–832.

    PubMed  CAS  Google Scholar 

  22. Gunnarsdottir SA, Sadik R, Shev S, et al. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. Am J Gastroenterol. 2003;98:1362–1370.

    PubMed  Google Scholar 

  23. Chang CS, Chen GH, Lien HC, et al. Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology. 1998;28:1187–1190.

    PubMed  CAS  Google Scholar 

  24. Pardo A, Bartoli R, Lorenzo-Zuniga V, et al. Effect of cisapride on intestinal bacterial overgrowth and bacterial translocation in cirrhosis. Hepatology. 2000;31:858–863.

    PubMed  CAS  Google Scholar 

  25. Gao Y, Song LX, Jiang MN, et al. Effects of traditional Chinese medicine on endotoxin and its receptors in rats with non-alcoholic steatohepatitis. Inflammation. 2008;31:121–132.

    PubMed  Google Scholar 

  26. Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103:12511–12516.

    PubMed  CAS  Google Scholar 

  27. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.

    PubMed  CAS  Google Scholar 

  28. Yang SQ, Lin HZ, Lane MD, et al. Obesity increases sensitivity to endotoxin liver injury: Implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A. 1997;94:2557–2562.

    PubMed  CAS  Google Scholar 

  29. Drewe J, Beglinger C, Fricker G. Effect of ischemia on intestinal permeability of lipopolysaccharides. Eur J Clin Invest. 2001;31:138–144.

    PubMed  CAS  Google Scholar 

  30. Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol. 2006;176:3070–3079.

    PubMed  CAS  Google Scholar 

  31. Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J Trauma. 1991;31:629–636.

    PubMed  CAS  Google Scholar 

  32. Tomita M, Ohkubo R, Hayashi M. Lipopolysaccharide transport system across colonic epithelial cells in normal and infective rat. Drug Metab Pharmacokinet. 2004;19:33–40.

    PubMed  CAS  Google Scholar 

  33. Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431–1433.

    PubMed  CAS  Google Scholar 

  34. Vreugdenhil AC, Rousseau CH, Hartung T, et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol. 2003;170:1399–1405.

    PubMed  CAS  Google Scholar 

  35. Wu RQ, Xu YX, Song XH, et al. Adhesion molecule and proinflammatory cytokine gene expression in hepatic sinusoidal endothelial cells following cecal ligation and puncture. World J Gastroenterol. 2001;7:128–130.

    PubMed  CAS  Google Scholar 

  36. Gutsmann T, Muller M, Carroll SF, et al. Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells. Infect Immun. 2001;69:6942–6950.

    PubMed  CAS  Google Scholar 

  37. Heumann D, Adachi Y, Le Roy D, et al. Role of plasma, lipopolysaccharide-binding protein, and CD14 in response of mouse peritoneal exudate macrophages to endotoxin. Infect Immun. 2001;69:378–385.

    PubMed  CAS  Google Scholar 

  38. Tobias PS, Soldau K, Gegner JA, et al. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem. 1995;270:10482–10488.

    PubMed  CAS  Google Scholar 

  39. Romics L Jr, Mandrekar P, Kodys K, Velayudham A, Drechsler Y, Dolganiuc A, Szabo G. Increased lipopolysaccharide sensitivity in alcoholic fatty livers is independent of leptin deficiency and toll-like receptor 4 (TLR4) or TLR2 mRNA expression. Alcohol Clin Exp Res. 2005;9:1018–1026.

    Google Scholar 

  40. Medvedev AE, Vogel SN. Overexpression of CD14, TLR4, and MD-2 in HEK 293T cells does not prevent induction of in vitro endotoxin tolerance. J Endotoxin Res. 2003;9:60–64.

    PubMed  CAS  Google Scholar 

  41. Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3:667–672.

    PubMed  CAS  Google Scholar 

  42. Tazi KA, Quioc JJ, Saada V, et al. Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: Possible role of Akt and IRAK-M. J Hepatol. 2006;45:280–289.

    PubMed  CAS  Google Scholar 

  43. Paik YH, Schwabe RF, Bataller R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37:1043–1055.

    PubMed  CAS  Google Scholar 

  44. Thurman RG, Bradford BU, Knecht KT, et al. Endotoxin, Kupffer cells and alcoholic liver injury. In: Blum HE, Bode Ch, Bode JCh, Sartor RB (ed) Gut and the liver. Falk Symposium 100, Dordrecht, The Netherlands. Kluwer Academic Publishers Group, 1997:222–240.

  45. Bode Ch, Schafer C, Bode JCh. The role of gut derived bacterial toxins (endotoxin) for the development of alcoholic liver disease in man. In: Blum HE, Bode Ch, Bode JCh, Sartor RB (ed) Gut and the liver. Falk Symposium 100, Dordrecht, The Netherlands. Kluwer Academic Publishers Group, 1997:281–298.

  46. McClain CJ, Song Z, Barve SS, et al. Recent advances in alcoholic liver disease. IV. Dysregulated cytokine metabolism in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2004;287:G497–G502.

    PubMed  CAS  Google Scholar 

  47. Copaci I, Micu L, Voiculescu M. The role of cytokines in non-alcoholic steatohepatitis. A review. J Gastrointest Liver Dis. 2006;15:363–373.

    Google Scholar 

  48. Hui JM, Hodge A, Farrell GC, et al. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology. 2004;40:46–54.

    PubMed  CAS  Google Scholar 

  49. Kugelmas M, Hill DB, Vivian B, et al. Cytokines and NASH: A pilot study of the effects of lifestyle modification and vitamin E. Hepatology. 2003;38:413–419.

    PubMed  CAS  Google Scholar 

  50. Crespo J, Cayon A, Fernandez-Gil P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001;34:1158–1163.

    PubMed  CAS  Google Scholar 

  51. Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40:185–194.

    PubMed  CAS  Google Scholar 

  52. Jung BD, Kimura K, Kitamura H, et al. Norepinephrine stimulates interleukin-6 mRNA expression in primary cultured rat hepatocytes. J Biochem. 2000;127:205–209.

    PubMed  CAS  Google Scholar 

  53. Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000;343:1467–1476.

    PubMed  CAS  Google Scholar 

  54. West DA, James NH, Cosulich SC, et al. Role for tumor necrosis factor a receptor 1 and interleukin-1 receptor in the suppression of mouse hepatocyte apoptosis by the peroxisome proliferator nafenopin. Hepatology. 1999;30:1417–1424.

    PubMed  CAS  Google Scholar 

  55. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147–152.

    PubMed  CAS  Google Scholar 

  56. Nonalcoholic steatohepatitis clinical research network. Hepatology. 2003;37:244.

  57. Kerlin P, Wong L. Breath hydrogen testing in bacterial overgrowth of the small intestine. Gastroenterology. 1988;95:982–988.

    PubMed  CAS  Google Scholar 

  58. Corazza GR, Strocchi A, Gasbarrini G. Fasting breath hydrogen in celiac disease. Gastroenterology. 1987;93:53–58.

    PubMed  CAS  Google Scholar 

  59. Perman JA, Modler S, Barr RG, et al. Fasting breath hydrogen concentration: Normal values and clinical application. Gastroenterology. 1984;87:1358–1363.

    PubMed  CAS  Google Scholar 

  60. Sharara AI, Aoun E, Abdul-Baki H, et al. A randomized double-blind placebo-controlled trial of rifaximin in patients with abdominal bloating and flatulence. Am J Gastroenterol. 2006;101:326–333.

    PubMed  CAS  Google Scholar 

  61. Posserud I, Stotzer PO, Bjornsson ES, et al. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut. 2007;56:802–808.

    PubMed  Google Scholar 

  62. Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. A double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412–419.

    PubMed  Google Scholar 

  63. Walters B, Vanner SJ. Detection of bacterial overgrowth in IBS using the lactulose H2 breath test: Comparison with 14C-D-xylose and healthy controls. Am J Gastroenterol. 2005;100:1566–1570.

    PubMed  CAS  Google Scholar 

  64. Bratten JR, Spanier J, Jones MP. Lactulose hydrogen breath testing (LHBT) in patients with IBS and controls: Differences in methane (CH4) but not hydrogen (H2). Am J Gastroenterol. 2006;101:S479.

    Google Scholar 

  65. Simon D, Borelli S, Braathen LR, Simon HU. Peripheral blood mononuclear cells from IgE- and non-IgE-associated allergic atopic eczema/dermatitis syndrome (AEDS) demonstrate increased capacity of generating interleukin-13 but differ in their potential of synthesizing interferon-gamma. Allergy. 2002;57:431–435.

    PubMed  CAS  Google Scholar 

  66. Bihl T, Vassina E, Boettger MK, et al. The T348M mutated form of cryopyrin is associated with defective lipopolysaccharide-induced interleukin 10 production in CINCA syndrome. Ann Rheum Dis. 2005;64:1380–1381.

    PubMed  CAS  Google Scholar 

  67. de Oliveira CP, Stefano JT, de Siqueira ER, et al. Combination of N-acetylcysteine and metformin improves histological steatosis and fibrosis in patients with non-alcoholic steatohepatitis. Hepatol Res. 2008;38:159–165.

    PubMed  Google Scholar 

  68. Gisbert JP, Gonzalez-Lama Y. Breath tests in the diagnosis of gastrointestinal diseases. Gastroenterol Hepatol. 2005;28:407–416.

    PubMed  CAS  Google Scholar 

  69. Kristensen M, Hoeck HC. Abnormal flora in the small intestine. Diagnostic evaluation of the H2 breath test. Ugeskr Laeger. 1994;156:7530–7533.

    PubMed  CAS  Google Scholar 

  70. Romagnuolo J, Schiller D, Bailey RJ. Using breath tests wisely in a gastroenterology practice: An evidence-based review of indications and pitfalls in interpretation. Am J Gastroenterol. 2002;97:1113–1126.

    PubMed  Google Scholar 

  71. Bauer TM, Schwacha H, Steinbruckner B, et al. Diagnosis of small intestinal bacterial overgrowth in patients with cirrhosis of the liver: Poor performance of the glucose breath hydrogen test. J Hepatol. 2000;33:382–386.

    PubMed  CAS  Google Scholar 

  72. Farrell G. Is bacterial ash the flash that ignites NASH? Gut. 2001;48:148–149.

    PubMed  CAS  Google Scholar 

  73. Sajjad A, Mottershead M, Syn WK, et al. Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2005;22:291–299.

    PubMed  CAS  Google Scholar 

  74. Reilly JA Jr, Quigley EM, Forst CF, et al. Small intestinal transit in the portal hypertensive rat. Gastroenterology. 1991;100:670–674.

    PubMed  Google Scholar 

  75. Casafont Morencos F, de las Heras Castano G, Martin Ramos L, et al. Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Dig Dis Sci. 1996;41:552–556.

    PubMed  CAS  Google Scholar 

  76. Prytz H, Holst-Christensen J, Korner B, et al. Portal venous and systemic endotoxaemia in patients without liver disease and systemic endotoxaemia in patients with cirrhosis. Scand J Gastroenterol. 1976;11:857–863.

    PubMed  CAS  Google Scholar 

  77. Lumsden AB, Henderson JM, Kutner MH. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology. 1988;8:232–236.

    PubMed  CAS  Google Scholar 

  78. Hurley JC, Tosolini FA, Louis WJ. Quantitative limulus lysate assay for endotoxin and the effect of plasma. J Clin Pathol. 1991;44:849–854.

    PubMed  CAS  Google Scholar 

  79. Jin X, Yu CH, Lv GC, et al. Increased intestinal permeability in pathogenesis and progress of nonalcoholic steatohepatitis in rats. World J Gastroenterol. 2007;13:1732–1736.

    PubMed  CAS  Google Scholar 

  80. Tarao K, So K, Moroi T, et al. Detection of endotoxin in plasma and ascitic fluid of patients with cirrhosis: Its clinical significance. Gastroenterology. 1977;73:539–542.

    PubMed  CAS  Google Scholar 

  81. Ruiz AG, Casafont F, Crespo J, et al. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: Evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg. 2007;17:1374–1380.

    PubMed  Google Scholar 

  82. Kopp E, Medzhitov R. Recognition of microbial infection by toll-like receptors. Curr Opin Immunol. 2003;15:396–401.

    PubMed  CAS  Google Scholar 

  83. Igolnikov AC, Green RM. C3H/HEJ mice with mutations of the toll-like receptor 4 (TLR-4) are resistant to the methionine-choline deficient (MCD) diet induced non-alcoholic steatohepatitis (NASH). Hepatology. 2003;36:A404.

    Google Scholar 

  84. Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47:571–579.

    PubMed  CAS  Google Scholar 

  85. Stadlbauer V, Mookerjee RP, Hodges S, et al. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J Hepatol. 2008;48:945–951.

    PubMed  CAS  Google Scholar 

  86. Szabo G, Velayudham A, Romics L Jr, et al. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: The role of toll-like receptors 2 and 4. Alcohol Clin Exp Res. 2005;29(11 Suppl):140S–145S.

    PubMed  CAS  Google Scholar 

  87. Tuncer I, Özbek H, Topal H, Uygan I. The serum levels of IL-1B, Il-6, IL-8 and TNF alpha in non alcoholic fatty liver disease. Turk J Med Sci. 2003;33:381–386.

    CAS  Google Scholar 

  88. Bahcecioglu IH, Yalniz M, Ataseven H, et al. Levels of serum hyaluronic acid, TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis. Hepatogastroenterology. 2005;52:1549–1553.

    PubMed  CAS  Google Scholar 

  89. Torer N, Ozenirler S, Yucel A, et al. Importance of cytokines, oxidative stress and expression of BCL-2 in the pathogenesis of non-alcoholic steatohepatitis. Scand J Gastroenterol. 2007;42:1095–1101.

    PubMed  CAS  Google Scholar 

  90. Jarrar MH, Baranova A, Collantes R, et al. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2008;27:412–421.

    PubMed  CAS  Google Scholar 

  91. Yin M, Wheeler MD, Kono H, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology. 1999;117:942–952.

    PubMed  CAS  Google Scholar 

  92. McClain C, Hill D, Schmidt J, et al. Cytokines and alcoholic liver disease. Semin Liver Dis. 1993;13:170–182.

    PubMed  CAS  Google Scholar 

  93. Wolff B, Burns AR, Middleton J, et al. Endothelial cell “memory” of inflammatory stimulation: Human venular endothelial cells store interleukin 8 in Weibel-Palade bodies. J Exp Med. 1998;188:1757–1762.

    PubMed  CAS  Google Scholar 

  94. Mohler KM, Sleath PR, Fitzner JN, et al. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature. 1994;370:218–220.

    PubMed  CAS  Google Scholar 

  95. Ashkenazi A, Marsters SA, Capon DJ, et al. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci USA. 1991;88:10535–10539.

    PubMed  CAS  Google Scholar 

  96. Zhang H, Feng Q, Li HS, et al. Effects of Qushi Huayu Decoction on cathepsin B and tumor necrosis factor-alpha expression in rats with non-alcoholic steatohepatitis. Zhong Xi Yi Jie He Xue Bao. 2008;6:928–933.

    PubMed  CAS  Google Scholar 

  97. Diehl AM. Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease. Clin Liver Dis. 2004;8:619–638.

    PubMed  Google Scholar 

  98. Lesmana CR, Lesmana LA, Akbar N, et al. Clinical picture, insulin resistance, and adipocytokines profiles of nonalcoholic steatohepatitis (NASH) patients in Indonesia. Acta Med Indones. 2009;41:6–10.

    PubMed  Google Scholar 

  99. Schramm C, Schneider A, Marx A, Lohse AW. Adalimumab could suppress the activity of non alcoholic steatohepatitis (NASH). Z Gastroenterol. 2008;46:1369–1371.

    PubMed  CAS  Google Scholar 

  100. Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–424.

    PubMed  CAS  Google Scholar 

  101. Roilides E, Katsifa H, Tsaparidou S, et al. Interleukin 10 suppresses phagocytic and antihyphal activities of human neutrolphils. Cytokine. 2000;12:379–387.

    PubMed  CAS  Google Scholar 

  102. Laichalk LL, Danforth JM, Standiford TJ. Interleukin-10 inhibits neutrophil phagocytic and bactericidal activity. FEMS Immunol Med Microbiol. 1996;15:181–187.

    PubMed  CAS  Google Scholar 

  103. Poniachik J, Csendes A, Diaz JC, et al. Increased production of IL-1alpha and TNF-alpha in lipopolysaccharide-stimulated blood from obese patients with non-alcoholic fatty liver disease. Cytokine. 2006;33:252–257.

    PubMed  CAS  Google Scholar 

  104. De Groote D, Zangerle PF, Gevaert Y, et al. Direct stimulation of cytokines (IL-1 beta, TNF-alpha, IL-6, IL-2, IFN-gamma and GM-CSF) in whole blood. I. Comparison with isolated PBMC stimulation. Cytokine. 1992;4:239–248.

    PubMed  Google Scholar 

  105. Mayringer I, Reindl M, Berger T. A critical comparison of frequently used methods for the analysis of tumor necrosis factor-alpha expression by human immune cells. J Immunol Methods. 2000;235:33–40.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by an award to the Alimentary Pharmabiotic Centre by Science Foundation Ireland and by a scholarship to AAS from the Egyptian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eamonn M. M. Quigley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanab, A.A., Scully, P., Crosbie, O. et al. Small Intestinal Bacterial Overgrowth in Nonalcoholic Steatohepatitis: Association with Toll-Like Receptor 4 Expression and Plasma Levels of Interleukin 8. Dig Dis Sci 56, 1524–1534 (2011). https://doi.org/10.1007/s10620-010-1447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1447-3

Keywords

Navigation