Digestive Diseases and Sciences

, Volume 56, Issue 3, pp 721–730 | Cite as

Protective Effects of Black Cumin (Nigella sativa) Oil on TNBS-Induced Experimental Colitis in Rats

  • F. Isik
  • Tugba Tunali AkbayEmail author
  • A. Yarat
  • Z. Genc
  • R. Pisiriciler
  • E. Caliskan-Ak
  • S. Cetinel
  • A. Altıntas
  • G. Sener
Original Article



The pathogenesis and treatment of ulcerative colitis remain poorly understood. The aim of the present study is to investigate the effects of black cumin (Nigella sativa) oil on rats with colitis.


Experimental colitis was induced with 1 mL trinitrobenzene sulfonic acid (TNBS) in 40% ethanol by intracolonic administration with 8-cm-long cannula under ether anesthesia to rats in colitis group and colitis + black cumin oil group. Rats in the control group were given saline at the same volume by intracolonic administration. Black cumin oil (BCO, Origo “100% natural Black Cumin Seed Oil,” Turkey) was given to colitis + black cumin oil group by oral administration during 3 days, 5 min after colitis induction. Saline was given to control and colitis groups at the same volume by oral administration. At the end of the experiment, macroscopic lesions were scored and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde, and glutathione levels, collagen content, and tissue factor, superoxide dismutase, and myeloperoxidase activities. Tissues were also examined by histological and cytological analysis. Proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6], lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples.


We found that black cumin oil decreased the proinflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis.


BCO, by preventing inflammatory status in the blood, partly protected colonic tissue against experimental ulcerative colitis.


Colitis Nigella sativa Inflammation Tissue factor activity Oxidant damage 


  1. 1.
    Nieto N, Torres MI, Fernandez MI, et al. Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig Dis Sci. 2000;45:1820–1827.CrossRefPubMedGoogle Scholar
  2. 2.
    Nathan C. Points of control in inflammation. Nature. 2002;420:846–852.CrossRefPubMedGoogle Scholar
  3. 3.
    O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28:477–487.CrossRefPubMedGoogle Scholar
  4. 4.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–689.CrossRefPubMedGoogle Scholar
  5. 5.
    Heller RA, Kronke M. Tumor necrosis factor receptor-mediated signalling pathways. J Cell Biol. 1994;126:5–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–150.CrossRefPubMedGoogle Scholar
  7. 7.
    Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J Clin Invest. 1999;104:1761–1770.CrossRefPubMedGoogle Scholar
  8. 8.
    Bauer J, Huy C, Brenmoehl J, Obermeier F, Bock J. Matrix metalloproteinase-1 expression induced by IL-1β requires acid sphingomyelinase. FEBS Lett. 2009;585:915–920.CrossRefGoogle Scholar
  9. 9.
    Yoshida N, Yoshikawa T, Yamaguchi T, et al. A novel water-soluble vitamin E derivative protects against experimental colitis in rats. Antioxid Redox Signal. 1999;1:555–562.CrossRefPubMedGoogle Scholar
  10. 10.
    Gulluoglu BM, Kurtel H, Gulluoglu MG, et al. Role of endothelins in trinitrobenzene sulfonic acid-induced colitis in rats. Digestion. 1999;60:484–492.CrossRefPubMedGoogle Scholar
  11. 11.
    Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK. Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol. 2003;139:209–218.CrossRefPubMedGoogle Scholar
  12. 12.
    Sener G, Aksoy H, Sehirli O, et al. Erdosteine prevents colonic inflammation through its antioxidant and free radical scavenging activities. Dig Dis Sci. 2007;52:2122–2132.CrossRefPubMedGoogle Scholar
  13. 13.
    Campieri M, Gionchetti P, Belluzzi A, et al. Optimum dosage of 5-aminosalicylic acid as rectal enemas in patients with active ulcerative colitis. Gut. 1991;32:929–931.CrossRefPubMedGoogle Scholar
  14. 14.
    Gionchetti P, Campieri M, Belluzzi A, et al. Interleukin 1 in ulcerative colitis. Gut. 1991;32:338.CrossRefPubMedGoogle Scholar
  15. 15.
    Koch TR, Yuan LX, Stryker SJ, Ratliff P, Telford GL, Opara EC. Total antioxidant capacity of colon in patients with chronic ulcerative colitis. Dig Dis Sci. 2000;45:1814–1819.CrossRefPubMedGoogle Scholar
  16. 16.
    Choudhary S, Keshavarzian A, Yong S, et al. Novel antioxidants zolimid and AEOL11201 ameliorate colitis in rats. Dig Dis Sci. 2001;46:2222–2230.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang HQ, Ding TT, Zhao JS, et al. Therapeutic effects of Clostridium butyricum on experimental colitis induced by oxazolone in rats. World J Gastroenterol. 2009;15:1821–1828.CrossRefPubMedGoogle Scholar
  18. 18.
    Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17:299–305.CrossRefPubMedGoogle Scholar
  19. 19.
    Terzi A, Coban S, Yildiz F, et al. Protective effects of Nigella sativa on intestinal ischemia-reperfusion injury in rats. J Invest Surg. 2010;23:21–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol. 2005;5:1749–1770.CrossRefPubMedGoogle Scholar
  21. 21.
    Wallace JL, Braquet P, Ibbotson GC, MacNaugton WK, Cirino G. Assessment of the role of platelet activating factor in an animal model of inflammatory bowel disease. J Lipid Med. 1989;1:13–23.Google Scholar
  22. 22.
    Gue M, Bonbonne J, Fioramonti J, et al. Stress-induced enhancement of colitis in rats: CRF and arginine vasopressin are not involved. Am J Physiol. 1997;272:G84–G91.PubMedGoogle Scholar
  23. 23.
    Lopez De Leon A, Rojkind M. A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem. 1985;33:737–743.PubMedGoogle Scholar
  24. 24.
    Atay Z, Topalidis T. Cytodiagnostic der Serosen Hohlen. Atlas und Lehrbuch. Herausgeber; A&T Hannover: Wolfgang Pabst Verlag; 1992:18–19.Google Scholar
  25. 25.
    Martinek RG. A rapid ultraviolet spectrophotometric lactic dehydrogenase assay. Clin Chem Acta. 1972;40:91–99.CrossRefGoogle Scholar
  26. 26.
    Hillegas LM, Griswold DE, Brickson B, Albrightson-Winslow C. Assesment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods. 1990;24:285–295.CrossRefGoogle Scholar
  27. 27.
    Ledwozwy A, Michalak J, Stepien A, Kadziolka A. The relationship plasma triglycerides, cholesterol, total lipids, and lipid peroxidation products during human atherosclerosis. Clin Chim Acta. 1986;55:275–284.CrossRefGoogle Scholar
  28. 28.
    Beutler E. Glutathione in red blood cell metabolism. In: A Manual of Biochemical Methods. New York: Grune & Stratton; 1975:112–114.Google Scholar
  29. 29.
    Ingram GI, Hills M. Reference method for the one-stage prothrombin-time test on human blood. Thromb Haemost. 1976;36:237–238.PubMedGoogle Scholar
  30. 30.
    Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of cupper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512–520.CrossRefGoogle Scholar
  31. 31.
    Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959;234:1971–1975.PubMedGoogle Scholar
  32. 32.
    Lowry OH, Rosebrough WI, Farr AL, Randal RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.PubMedGoogle Scholar
  33. 33.
    Amini-Shirazi N, Hoseini A, Ranjbar A, et al. Inhibition of tumor necrosis factor and nitrosative/oxidative stresses by Ziziphora clinopoides (Kahlioti); a molecular mechanism of protection against dextran sodium sulfate-induced colitis in mice. Toxicol Mech Methods. 2009;19(2):183–189.CrossRefPubMedGoogle Scholar
  34. 34.
    Babbs CF. Oxygen radicals in ulcerative colitis. Free Radic Biol Med. 1992;13:169–181.CrossRefPubMedGoogle Scholar
  35. 35.
    Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L. Biochemistry and role of sialic acid. In: Rsebberg A, ed. Biology of Sialic Acids. New York: Plenum; 1995.Google Scholar
  36. 36.
    Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–1367.CrossRefPubMedGoogle Scholar
  37. 37.
    Grisham MB. Oxidants and free radicals in inflammatory bowel disease. Lancet. 1994; 24:344(8926):859–861.Google Scholar
  38. 38.
    Guo X, Wang WP, Ko JK, Cho CH. Involvement of neutrophils and free radicals in the potentiating effects of passive cigarette smoking on inflammatory bowel disease in rats. Gastroenterology. 1999;117:884–892.CrossRefPubMedGoogle Scholar
  39. 39.
    van der Veen BS, de Winther MP, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal. 2009;11:2899–2937.CrossRefPubMedGoogle Scholar
  40. 40.
    Shiratora Y, Aoki S, Takada H, et al. Oxygen-derived free radical generating capacity of polymorphonuclear cells in patients with ulcerative colitis. Digestion. 1989;44:163–171.CrossRefPubMedGoogle Scholar
  41. 41.
    Scarpa M, Romanato G, Manzato E, et al. Restorative proctocolectomy for ulcerative colitis: Impact on lipid metabolism and adipose tissue and serum fatty acids. J Gastrointest Surg. 2008;12:279–287.CrossRefPubMedGoogle Scholar
  42. 42.
    Hardardottir I, Doerrler W, Feingold KR, Grunfeld C. Cytokines stimulate lipolysis and decrease lipoprotein lipase activity in cultured fat cells by a prostaglandin independent mechanism. Biochem Biophys Res Commun. 1992;186:237–243.CrossRefPubMedGoogle Scholar
  43. 43.
    Bauer J, Liebisch G, Hofmann C, et al. Lipid alterations in experimental murine colitis: role of ceramide and imipramine for matrix metalloproteinase-1 expression. PLoS ONE. 2009;4(9):e7197.CrossRefPubMedGoogle Scholar
  44. 44.
    Stark G. Functional consequences of oxidative membrane damage. J Membr Biol. 2005;205:1–16.CrossRefPubMedGoogle Scholar
  45. 45.
    Isozaki Y, Yoshida N, Kuroda M, et al. Effect of a novel water-soluble vitamin E derivative as a cure for TNBS induced colitis in rats. Int J Mol Med. 2006;17:497–502.PubMedGoogle Scholar
  46. 46.
    Colon AL, Madrigal JL, Menchen LA, et al. Stress increases susceptibility to oxidative/nitrosative mucosal damage in an experimental model of colitis in rats. Dig Dis Sci. 2004;49:1713–1721.CrossRefPubMedGoogle Scholar
  47. 47.
    İseri SO, Sener G, Saglam B, Gedik N, Ercan F, Yegen BC. Oxytocin ameliorates oxidative colonic inflammation by a neutrophil-dependent mechanism. Peptides. 2005;26(3):483–491.CrossRefPubMedGoogle Scholar
  48. 48.
    Khalife KH, Lupidi G. Nonenzymatic reduction of thymoquinone in physiological conditions. Free Radic Res. 2007;41:153–161.CrossRefPubMedGoogle Scholar
  49. 49.
    Badary OA, Taha RA, Gamal El-Din AM, Abdel-Wahab MH. Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol. 2003;26:87–98.CrossRefPubMedGoogle Scholar
  50. 50.
    Ramadan MF, Kroh LW, Morsel JT. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem. 2003;51:6961–6969.CrossRefPubMedGoogle Scholar
  51. 51.
    Ruggiero C, Lattanzio F, Lauretani F, Gasperini B, Andres-Lacueva C, Cherubini A. Omega—3 polyunsaturated fatty acids and immune-mediated diseases: Inflammatory bowel disease and rheumatoid arthritis. Curr Pharm Des. 2009;15:4135–4148.CrossRefPubMedGoogle Scholar
  52. 52.
    Hekmatdoost A, Feizabadi MM, Djazayery A, et al. The effect of dietary oils on cecal microflora in experimental colitis in mice. Indian J Gastroenterol. 2008;27:186–189.PubMedGoogle Scholar
  53. 53.
    Wanasundara UN, Shahidi F. Canola extract as an alternative natural antioxidant for canola oil. J Am Oil Chem Soc. 1994;71:817–822.CrossRefGoogle Scholar
  54. 54.
    Bachlie E. History of tissue factor. Br J Haematol. 2000;110:248–255.CrossRefGoogle Scholar
  55. 55.
    Lwaleed BA, Francis JL, Chrisholm M. Urinary tissue factor levels in neoplastic disease. Ann Saudi Med. 2000;20:197–201.PubMedGoogle Scholar
  56. 56.
    Danese S, Papa A, Saibeni S, Repici A, Malesci A, Vecchi M. Inflammation and coagulation in inflammatory bowel disease: the clot thickens. Am J Gastroenterol. 2007;102:174–186.CrossRefPubMedGoogle Scholar
  57. 57.
    Anthoni C, Russell J, Wood KC, et al. Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. J Exp Med. 2007;204(7):1595–1601.CrossRefPubMedGoogle Scholar
  58. 58.
    Fries W, Pagiaro E, Canova E, et al. The effect of heparin on trinitrobenzene sulphonic acid-induced colitis in the rat. Aliment Pharmacol Ther. 1998;12:229–236.CrossRefPubMedGoogle Scholar
  59. 59.
    Vowinkel T, Anthoni C, Wood KC, et al. CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon. Gastroenterology. 2007;132:955–965.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • F. Isik
    • 1
  • Tugba Tunali Akbay
    • 1
    Email author
  • A. Yarat
    • 1
  • Z. Genc
    • 1
  • R. Pisiriciler
    • 2
  • E. Caliskan-Ak
    • 2
  • S. Cetinel
    • 3
  • A. Altıntas
    • 4
  • G. Sener
    • 5
  1. 1.Faculty of Dentistry, Department of BiochemistryMarmara UniversityIstanbulTurkey
  2. 2.Faculty of Dentistry, Department of Histology and EmbryologyMarmara UniversityIstanbulTurkey
  3. 3.Faculty of Medicine, Department of Histology and EmbryologyMarmara UniversityIstanbulTurkey
  4. 4.Faculty of Pharmacy, Department of PharmacognosyAnadolu UniversityEskisehirTurkey
  5. 5.Faculty of Pharmacy, Department of PharmacologyMarmara UniversityIstanbulTurkey

Personalised recommendations