Digestive Diseases and Sciences

, Volume 55, Issue 11, pp 3041–3046 | Cite as

Proteomic Analyses Lead to a Better Understanding of Celiac Disease: Focus on Epitope Recognition and Autoantibodies

  • Valli De Re
  • Maria Paola Simula
  • Vincenzo Canzonieri
  • Renato Cannizzaro
Review

Abstract

Proteomic technologies are being used with increasing frequency in the scientific community. In this review, we have highlighted their use in celiac disease (CD). The available techniques, which include two-dimensional (2D) gel electrophoresis, mass spectrometry, and antibody and tissue arrays, have been used to identify proteins or changes in protein expression specific to gut tissue from patients with CD. A number of studies have employed proteomic methodologies to determine the diagnostic biomarkers in body fluids or to examine changes in protein expression and posttranslational modifications during signaling. A fast technological development of these methods, along with the combination of classic techniques with proteomics, will lead to new discoveries, which will consent a better understanding of the pathogenesis of CD.

Keywords

Celiac disease Proteomics Metabolomic strategy Two-dimensional gel electrophoresis: DIGE Mass spectrometry, MALDI-TOF Epitope 

References

  1. 1.
    Hausch F, Shan L, Santiago NA, Gray GM, Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol. 2002;283:G996–G1003.PubMedGoogle Scholar
  2. 2.
    Ferranti P, Mamone G, Picariello G, Addeo F. Mass spectrometry analysis of gliadins in celiac disease. J Mass Spectrom. 2007;42:1531–1548.CrossRefPubMedGoogle Scholar
  3. 3.
    Molberg O, McAdam S, Lundin KE, Kristiansen C, et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol. 2001;31:1317–1323.CrossRefPubMedGoogle Scholar
  4. 4.
    Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci. 2004;101:4175–4179.CrossRefPubMedGoogle Scholar
  5. 5.
    Salvati VM, Mazzarella G, Gianfrani C, Levings MK, Stefanile R, De Giulio B. Recombinant human IL-10 suppresses gliadin dependent T cell activation in ex vivo cultured celiac intestinal mucosa. Gut. 2005;54:46–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Sollid LM, Khosla C. Future therapeutic options for celiac disease. Nat Clin Pract Gastroenterol Hepatol. 2005;2:140–147.CrossRefPubMedGoogle Scholar
  7. 7.
    Gass J, Bethune MT, Siegel M, Spencer A, Khosla C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology. 2007;133:472–480.CrossRefPubMedGoogle Scholar
  8. 8.
    Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model implications for coeliac disease. Gut. 2008;57:25–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Rizzello CG, De Angelis M, Di Cagno R, Camarca A, et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing new perspectives for celiac disease. Appl Environ Microbiol. 2007;73:4499–4507.CrossRefPubMedGoogle Scholar
  10. 10.
    Marti T, Molberg O, Li Q, Gray GM, Khosla C, Sollid LM. Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten chemical and immunological characterization. J Pharmacol Exp Ther. 2005;312:19–26.CrossRefPubMedGoogle Scholar
  11. 11.
    Caputo I, D’Amato A, Troncone R, Auricchio S, Esposito C. Transglutaminase 2 in celiac disease. Amino Acids. 2004;26:381–386.CrossRefPubMedGoogle Scholar
  12. 12.
    Stenman SM, Lindfors K, Korponay-Szabo IR, Lohi O, et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 2008;9:6.CrossRefPubMedGoogle Scholar
  13. 13.
    Shaoul R, Lerner A. Associated autoantibodies in celiac disease. Autoimmun Rev. 2007;6:559–565.CrossRefPubMedGoogle Scholar
  14. 14.
    Utz PJ, Anderson P. Posttranslational protein modifications apoptosis and the bypass of tolerance to autoantigens. Arthritis Rheum. 1998;41:1152–1160.CrossRefPubMedGoogle Scholar
  15. 15.
    Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006;55:1512–1520.CrossRefPubMedGoogle Scholar
  16. 16.
    Szebeni B, Veres G, Dezsofi A, Rusai K, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45:187–193.CrossRefPubMedGoogle Scholar
  17. 17.
    Hue S, Mention JJ, Monteiro RC, Zhang S, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004;21:367–377.CrossRefPubMedGoogle Scholar
  18. 18.
    Meresse B, Chen Z, Ciszewski C, Tretiakova M, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21:357–366.CrossRefPubMedGoogle Scholar
  19. 19.
    Schumanm M, Richter JF, Wedell I, Moos V, et al. Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue. Gut. 2008;57:747–754.CrossRefGoogle Scholar
  20. 20.
    Orrù S, Caputo I, D’Amato A, Ruoppolo M, Esposito C. Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. J Biol Chem. 2003;278:31766–31773.CrossRefPubMedGoogle Scholar
  21. 21.
    Piredda L, Amendola A, Colizzi V, Davies PJ, et al. Lack of ‘tissue’ transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells relationship to development of autoimmunity in MRLIpr/Ipr mice. Cell Death Differ. 1997;4:463–472.CrossRefPubMedGoogle Scholar
  22. 22.
    Nicholas B, Smethurst P, Verderio E, Jones R, Griffin M. Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death a mechanism for maintaining tissue integrity. Biochem J. 2003;371:413–422.CrossRefPubMedGoogle Scholar
  23. 23.
    Carroccio A, Brusca I, Iacono G, Di Prima L, et al. Correlation with intestinal mucosa damage and comparison of ELISA with the immunofluorescence assay. Clin Chem. 2005;51:917–920.CrossRefPubMedGoogle Scholar
  24. 24.
    Multhoff G. Heat shock proteins in immunity. Handb Exp Pharmacol. 2006;172:279–304.CrossRefPubMedGoogle Scholar
  25. 25.
    Caggiari L, Cannizzaro R, De Zorzi M, Canzonieri V, Da Ponte A, De Re V. A new HLA-A*680106 allele identified in individuals with celiac disease from the Friuli area of northeast Italy. Tissue Antigens. 2008;72:491–492.CrossRefPubMedGoogle Scholar
  26. 26.
    Collin P, Kaukinen K, Vogelsang H, Korponay-Szabo I, et al. Antiendomysial and antihuman recombinant tissue transglutaminase antibodies in the diagnosis of coeliac disease a biopsy-proven European multicentre study. Eur J Gastroenterol Hepatol. 2005;17:85–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Salmi T, Collin P, Korponay-Szabó I, Laurila K, et al. Endomysial antibody-negative coeliac disease clinical characteristics and intestinal autoantibody deposits. Gut. 2006;55:1746–1753.CrossRefPubMedGoogle Scholar
  28. 28.
    Stulík J, Hernychová L, Porkertová S, et al. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics. 2003;3:951–956.CrossRefPubMedGoogle Scholar
  29. 29.
    Bertini I, Calabrò A, De Carli V, Luchinat C, et al. The metabonomic signature of celiac disease. J Proteome Res. 2009;8:170–177.CrossRefPubMedGoogle Scholar
  30. 30.
    Simula MP, Cannizzaro R, Canzonieri V, Pavan A, et al. PPAR signalling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med. 2010;16(5–6):199–209.PubMedGoogle Scholar
  31. 31.
    De Re V, Simula MP, Notarpietro A, Canzonieri V, Cannizzaro R, Toffoli G. Do gliadin and tissue transglutaminase mediate PPAR downregulation in intestinal cells of patients with celiac disease? GUT (in press).Google Scholar
  32. 32.
    Barabási AL, Oltvai ZN. Network biology understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–113.CrossRefPubMedGoogle Scholar
  33. 33.
    Luciani A, Villella VR, Vasaturo A, et al. Lysosomal accumulation of gliadin p31–43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARγ downregulation in intestinal epithelial cells and coeliac mucosa. Gut. 2010;59:311–319.CrossRefPubMedGoogle Scholar
  34. 34.
    Bünger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Müller M. Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol Genomics. 2007;30:192–204.CrossRefPubMedGoogle Scholar
  35. 35.
    Tong-Chuan HE, Chan TA, Vogelstein B, Kinzler KW. PPAR delta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell. 1999;99:335–345.CrossRefGoogle Scholar
  36. 36.
    Lefebrve A-M, Najib J, Dewreumaux P, Najib J, et al. Activation of the peroxisome proliferator activated receptor gamma promotes the development of colon tumours in C57BL/6 J-APCMin/+ mice. Nat Med. 1998;4:1053–1057.CrossRefGoogle Scholar
  37. 37.
    Saez E, Tontonoz P, Nelson MC, Alvarez JG, et al. Activation of the nuclear receptor PPAR gamma enhance colon polyp formation. Nat Med. 1998;4:1058–1061.CrossRefPubMedGoogle Scholar
  38. 38.
    Curley CR, Monsuur AJ, Wapenaar MC, Rioux JD, Wijmenga C. A functional candidate screen for coeliac disease genes. Eur J Hum Genet. 2006;14:1215–1222.CrossRefPubMedGoogle Scholar
  39. 39.
    De Re V, Simula MP, Cannizzaro R, et al. Galectin-10, eosinophils, and celiac disease. Ann NY Acad Sci. 2009;1173:357–364.CrossRefPubMedGoogle Scholar
  40. 40.
    De Re V, Simula MP, Caggiari L, Orsez N, et al. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis. Ann NY Acad Sci. 2007;1109:429–440.CrossRefPubMedGoogle Scholar
  41. 41.
    Crabtree JE, Heatley RV, Losowsky ML. Immunoglobulin secretion by isolated intestinal lymphocytes spontaneous production and T cell regulation in normal small intestine and in patients with coeliac disease. Gut. 1989;30:347–354.CrossRefPubMedGoogle Scholar
  42. 42.
    Scott BB, Scott DG, Losowsky MS. Jejunal mucosal immunoglobulins and complement in untreated coeliac disease. J Pathol. 1977;121:219–223.CrossRefPubMedGoogle Scholar
  43. 43.
    Halstensen TS, Hvatum M, Scott H, Fausa O, Brandtzaeg P. Association of subepithelial deposition of activated complement and immunoglobulin G and M response to gluten in celiac disease. Gastroenterology. 1992;102:751–759.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Valli De Re
    • 1
  • Maria Paola Simula
    • 1
  • Vincenzo Canzonieri
    • 2
  • Renato Cannizzaro
    • 3
  1. 1.Experimental and Clinical Pharmacology Unit, Molecular Oncology and Translational Medicine, DomertCRO, Centro di Riferimento Oncologico, IRCCS National Cancer InstituteAvianoItaly
  2. 2.PathologyCRO, Centro di Riferimento Oncologico, IRCCS National Cancer InstituteAvianoItaly
  3. 3.GastroenterologyCRO, Centro di Riferimento Oncologico, IRCCS National Cancer InstituteAvianoItaly

Personalised recommendations