Digestive Diseases and Sciences

, Volume 55, Issue 7, pp 1918–1931 | Cite as

The Case for Endoscopic Treatment of Non-dysplastic and Low-Grade Dysplastic Barrett’s Esophagus

  • David E. Fleischer
  • Robert Odze
  • Bergein F. Overholt
  • John Carroll
  • Kenneth J. Chang
  • Ananya Das
  • John Goldblum
  • Daniel Miller
  • Charles J. Lightdale
  • Jeffrey Peters
  • Richard Rothstein
  • Virender K. Sharma
  • Daniel Smith
  • Victor Velanovich
  • Herbert Wolfsen
  • George Triadafilopoulos
Opinion Article

Abstract

Non-dysplastic mucosa (ND-) in Barrett’s esophagus (BE) shows clonal molecular aberrations, loss of cell cycle control, and other features of “neoplasia.” These changes occur prior to morphologic expression of neoplasia (dysplasia). Morphologic evaluation of dysplasia is fraught with error, and, as a result, often leads to false-negative and false-positive diagnoses. Early “crypt dysplasia” is difficult to detect, and is often missed in routine biopsy specimens. Some studies show substantial progression rates of low-grade dysplasia (LGD), and crypt dysplasia, to esophageal adenocarcinoma (EAC). Dysplasia, even when fully developed, may, in certain circumstances, be difficult to differentiate from non-dysplastic (regenerating) BE. Radiofrequency ablation (RFA) is a safe and effective method for removing mucosa at risk of cancer. Given the difficulties of dysplasia assessment in mucosal biopsies, and the molecular characteristics of ND-BE, this technique should be considered for treatment of all BE patients, including those with ND or LGD. Post-ablation neo-squamous epithelium reveals no molecular abnormalities, and is biologically stable. Given that prospective randomized controlled trials of ablative therapy for ND-BE aiming at reducing EAC incidence and mortality are unlikely to be completed in the near future, endoscopic ablation is a valid management option. The success of RFA in achieving safe, uniform, reliable, and predictable elimination of BE allows surgeons to combine fundoplication with RFA. Currently, there is no type of treatment for dysplastic or non-dysplastic BE that achieves a complete response in 100% of patients, eliminates all risk of developing cancer, results in zero adverse events, is less expensive in terms of absolute costs than surveillance, is durable for 20+ years, or eliminates the need for surveillance. Regardless, RFA shows established safety, efficacy, durability, and cost-effective profiles that should be considered in the management of patients with non-dysplastic or low-grade dysplastic BE.

Keywords

Barrett’s esophagus Radiofrequency ablation Esophageal cancer Adenocarcinoma Intestinal metaplasia Low-grade dysplasia 

Notes

Acknowledgments

Grant Support for Work Performed in Conjunction with this Manuscript

None.

Financial disclosure

Some authors have received research grant support from BÂRRX Medical, Inc. for the conduct of clinical trials (DEF, CJL, BFO, KJC, JG, RR, VKS, HW). Some authors have received speaking honoraria from BÂRRX Medical, Inc. (DEF, CJL, BFO, KJC, RR, VKS, GT).

References

  1. 1.
    Sharma P. Clinical practice. Barrett’s esophagus. N Engl J Med. 2009;361:2548–2556.PubMedCrossRefGoogle Scholar
  2. 2.
    Haggitt RC. Barrett’s esophagus: pathogenesis, dysplasia, and adenocarcinoma. Hum Pathol. 1994;25:982–993.PubMedCrossRefGoogle Scholar
  3. 3.
    Fitzgerald RC, Lascar R, Triadafilopoulos G. Barrett’s esophagus, dysplasia and pharmacologic acid suppression. Aliment Pharmacol Ther. 2001;15:269–276.PubMedCrossRefGoogle Scholar
  4. 4.
    Odze RD. Update on the diagnosis and treatment of Barrett’s esophagus and related neoplastic precursor lesions. Arch Pathol Lab Med. 2008;132:1577–1585.PubMedGoogle Scholar
  5. 5.
    Riddell RH, Odze RD. Definition of Barrett’s esophagus: time for a rethink—is intestinal metaplasia dead? Am J Gastroenterol. 2009;104:2588–2594.PubMedCrossRefGoogle Scholar
  6. 6.
    Ronkainen J, Aro P, Storskrubb T, et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology. 2005;129:1825–1831.PubMedCrossRefGoogle Scholar
  7. 7.
    Sampliner RE. A population prevalence of Barrett’s esophagus—finally. Gastroenterology. 2005;129:2101–2113.PubMedCrossRefGoogle Scholar
  8. 8.
    Cameron AJ, Lomboy CT. Barrett’s esophagus: age, prevalence and extent of columnar epithelium. Gastroenterology. 1992;103:1241–1245.PubMedGoogle Scholar
  9. 9.
    Gerson LB, Shetler K, Triadafilopoulos G. Prevalence of Barrett’s esophagus in asymptomatic individuals. Gastroenterology. 2002;123:636–639.CrossRefGoogle Scholar
  10. 10.
    van Soest EM, Dieleman JP, Siersema PD, et al. Increasing incidence of Barrett’s esophagus in the general population. Gut. 2005;54:1062–1066.PubMedCrossRefGoogle Scholar
  11. 11.
    Horner MJ, et al. SEER Cancer Statistics Review, 1975–2006, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2006/, based on November 2008 SEER data submission, posted to the SEER web site, 2009.
  12. 12.
    Wani S, Puli SR, Shaheen NJ, et al. Esophageal adenocarcinoma in Barrett’s esophagus after endoscopic ablative therapy: a meta-analysis and systematic review. Am J Gastroenterol. 2009;104:502–513.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang KK, Sampliner RE. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol. 2008;103:788–797.PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper GS, Kou TD, Chak A. Receipt of previous diagnoses and endoscopy and outcome from esophageal adenocarcinoma: a population-based study with temporal trends. Am J Gastroenterol. 2009;104:1356–1362.PubMedCrossRefGoogle Scholar
  15. 15.
    Corley DA, Levin TR, Habel LA, Weiss NS, Buffler PA. Surveillance and survival in Barrett’s adenocarcinomas: a population—based study. Gastroenterology. 2002;122:633–640.PubMedCrossRefGoogle Scholar
  16. 16.
    Overholt BF, Lightdale CJ, Wang KK, et al. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: international, partially blinded, randomized phase III trial. Gastrointest Endosc. 2005;62:488–498.PubMedCrossRefGoogle Scholar
  17. 17.
    Shaheen NJ, Sharma P, Overholt BF, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360:2277–2288.PubMedCrossRefGoogle Scholar
  18. 18.
    Achkar E, Carey W. The cost of surveillance for adenocarcinoma complicating Barrett’s esophagus. Am J Gastroenterol. 1988;83:291–294.PubMedGoogle Scholar
  19. 19.
    Provenzale D, Schmitt C, Wong JB. Barrett’s esophagus: a new look at surveillance based on emerging estimates of cancer risk. Am J Gastroenterol. 1999;94:2043–2053.PubMedCrossRefGoogle Scholar
  20. 20.
    Inadomi JM, Sampliner R, Lagergren J, Lieberman D, Fendrick AM, Vakil N. Screening and surveillance for Barrett esophagus in high-risk groups: a cost-utility analysis. Ann Intern Med. 2003;138(3):176–186.PubMedGoogle Scholar
  21. 21.
    Inadomi JM. Surveillance in Barrett’s esophagus: a failed premise. Keio J Med. 2009;58(1):12–18.PubMedCrossRefGoogle Scholar
  22. 22.
    Sharma P, Falk GW, Weston AP, et al. Dysplasia and cancer in a large multicenter cohort of patients with Barrett’s esophagus. Clin Gastroenterol Hepatol. 2006;4:566–572.PubMedCrossRefGoogle Scholar
  23. 23.
    Crockett SD, Lippmann QK, Dellon ES, Shaheen NJ. Health-related quality of life in patients with Barrett’s esophagus: a systematic review. Clin Gastroenterol Hepatol. 2009;7(6):613–623.PubMedCrossRefGoogle Scholar
  24. 24.
    Hormi-Carver K, Souza R. Molecular markers and genetics in cancer development. Surg Oncol Clin N Am. 2009;18(3):453–467.PubMedCrossRefGoogle Scholar
  25. 25.
    Koppert LB, Wijnhoven B, Van Dekken H, et al. The molecular biology of esophageal adenocarcinoma. J Surg Oncol. 2005;92:169–190.PubMedCrossRefGoogle Scholar
  26. 26.
    Lai LA, Paulson TG, Li X, et al. Increasing genomic instability during premalignant neoplastic progression revealed through high-resolution array-CGH. Gene Chromosomes Cancer. 2007;46(6):532–542.CrossRefGoogle Scholar
  27. 27.
    Li X, Galipeau PC, Sanchez CA, et al. Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett’s esophagus neoplastic progression. Cancer Prev Res. 2008;1(6):413–423.CrossRefGoogle Scholar
  28. 28.
    Wong DJ, Paulson TG, Prevo LJ, et al. p16 INK4a lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res. 2001;61:8284–8289.PubMedGoogle Scholar
  29. 29.
    Gulizia J, Wang H, Antonioli D, et al. Proliferative characteristics of intestinalized mucosa in the distal esophagus and gastroesophageal junction (short segment Barrett’s esophagus). Human Pathol. 1999;30(4):412–419.CrossRefGoogle Scholar
  30. 30.
    Gray MR, Hall PA, Nash J, et al. Epithelial proliferation in Barrett’s esophagus by proliferating cell nuclear antigen immuno-localization. Gastroenterology. 1992;103(6):1769–1776.PubMedGoogle Scholar
  31. 31.
    Maley CC, Galipeau PC, Li X, et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 2004;64:7629–7633.PubMedCrossRefGoogle Scholar
  32. 32.
    Cooper BT, Chapman W, Neumann CS, et al. Continuous treatment of Barrett’s oesophagus patients with proton pump inhibitors up to 13 years: observations on regression and cancer incidence. Aliment Pharmacol Ther. 2006;23(6):727–733.PubMedCrossRefGoogle Scholar
  33. 33.
    Gatenby PA, Ramus JR, Caygill CP, et al. Does the length of the columnar-lined esophagus change with time? Dis Esophagus. 2007;20(6):497–503.PubMedCrossRefGoogle Scholar
  34. 34.
    Herbst JJ, Berenson MM, McCloskey DW, et al. Cell proliferation in esophageal columnar epithelium (Barrett’s esophagus). Gastroenterology. 1978;75(4):683–687.PubMedGoogle Scholar
  35. 35.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Galipeau PC, Prevo LJ, Sanchez CA, et al. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst. 1999;91:2087–2095.PubMedCrossRefGoogle Scholar
  37. 37.
    Blount PL, Galipeau PC, Sanchez CA, et al. 17p allelic losses in diploid cells of patients with Barrett’s esophagus who develop aneuploidy. Cancer Res. 1994;54:2292–2295.PubMedGoogle Scholar
  38. 38.
    Bani-Hani K, Martin IG, Hardie LJ, et al. Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst. 2000;92:1316–1321.PubMedCrossRefGoogle Scholar
  39. 39.
    Eads CA, Lord RV, Kurumboor SK, et al. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res. 2000;60:5021–5026.PubMedGoogle Scholar
  40. 40.
    Kawakami K, Brabender J, Lord RV, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 2000;92:1805–1811.PubMedCrossRefGoogle Scholar
  41. 41.
    Morales CP, Lee EL, Shay JW. In situ hybridization for the detection of telomerase RNA in the progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer. 1998;83:652–659.PubMedCrossRefGoogle Scholar
  42. 42.
    Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G. Cyclooxygenase-2 expression in Barrett’s esophagus and esophageal adenocarcinoma: ex-vivo induction by bile salts and acid exposure. Gastroenterology. 2000;118:487–496.PubMedCrossRefGoogle Scholar
  43. 43.
    Fitzgerald RC, Omary MB, Triadafilopoulos G. Dynamic effects of acid on Barrett’s esophagus: an ex vivo proliferation and differentiation model. J Clin Invest. 1996;98:2120–2128.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaur BS, Ouatu-Lascar R, Fitzgerald RC, Omary MB, Triadafilopoulos G. Bile salts induce or blunt cell proliferation in Barrett’s esophagus in an acid-dependent fashion. Am J Physiol (Gastrointest Liver Physiol). 2000;278:G1000–G1009.Google Scholar
  45. 45.
    Jiménez P, Piazuelo E, Cebrian C, Ortego J, et al. Prostaglandin EP2 receptor expression is increased in Barrett’s oesophagus and oesophageal adenocarcinoma. Aliment Pharmacol Ther. 2010;31(3):440–451.PubMedCrossRefGoogle Scholar
  46. 46.
    Triadafilopoulos G, Kaur B, Sood S, Traxler B, Levine D, Weston A. Effects of esomeprazole combined with aspirin or rofecoxib on prostaglandin E2 production in patients with Barrett’s esophagus. Aliment Pharmacol Ther. 2006;23:997–1005.PubMedCrossRefGoogle Scholar
  47. 47.
    Shimizu D, Vallböhmer D, Kuramochi H, et al. Increasing cyclooxygenase-2 (cox-2) gene expression in the progression of Barrett’s esophagus to adenocarcinoma correlates with that of Bcl-2. Int J Cancer. 2006;119(4):765–770.PubMedCrossRefGoogle Scholar
  48. 48.
    Rabinovitch PS, Longton G, Blount PL, et al. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am J Gastroenterol. 2001;96:3071–3083.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu W, Hahn H, Odze RD, et al. Metaplastic esophageal columnar epithelium without goblet cells shows DNA content abnormalities similar to goblet cell containing epithelium. Am J Gastorenterol. 2009;81:241–247.Google Scholar
  50. 50.
    Yu C, Zhang X, Huang Q, et al. High-fidelity DNA histograms in neoplastic progression in Barrett’s esophagus. Lab Invest. 2007;87:466–472.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang X, Huang Q, Goyal RK, et al. DNA ploidy abnormalities in basal and superficial regions of the crypts in Barrett’s esophagus and associated neoplastic lesions. Am J Surg Pathol. 2008;32:1327–1335.PubMedCrossRefGoogle Scholar
  52. 52.
    Chaves P, Crespo M, Ribeiro C, et al. Chromosomal analysis of Barrett’s cells: demonstration of instability and detection of the metaplastic lineage involved. Mod Pathol. 2007;20:788–796.PubMedCrossRefGoogle Scholar
  53. 53.
    Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW. Gene expression profiling reveals stromal genes expressed in common between Barrett’s esophagus and adenocarcinoma. Gastroenterology. 2006;131(3):925–933.PubMedCrossRefGoogle Scholar
  54. 54.
    Galipeau PC, Cowan DS, Sanchez CA, et al. 17p (p53) allelic losses, 4 N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA. 1996;93:7081–7084.PubMedCrossRefGoogle Scholar
  55. 55.
    Galipeau PC, Li X, Blount PL, et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 2007;4:342–354.CrossRefGoogle Scholar
  56. 56.
    Wang JS, Guo M, Montgomery EA, et al. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett’s esophagus. Am J Gastroenterol. 2009;104:2153–2160.PubMedCrossRefGoogle Scholar
  57. 57.
    Wongsurawat VJ, Finley JC, Galipeau PC, et al. Genetic mechanisms of TP53 loss of heterozygosity in Barrett’s esophagus: implications for biomarker validation. Cancer Epidemiol Biomark Prev. 2006;15(3):509–516.CrossRefGoogle Scholar
  58. 58.
    Kerkhof M, Steyerberg EW, Kusters JG, et al. Aneuploidy and high expression of p53 and Ki67 is associated with neoplastic progression in Barrett’s esophagus. Cancer Biomark. 2008;4:1–10.PubMedGoogle Scholar
  59. 59.
    Odze RD. Diagnosis and grading of dysplasia in Barrett’s oesophagus. J Clin Pathol. 2006;59:1029–1038.PubMedCrossRefGoogle Scholar
  60. 60.
    Montgomery E, Bronner MP, Goldblum JR, et al. Reproducibility of the diagnosis of dysplasia in Barrett’s esophagus: a reaffirmation. Hum Pathol. 2001;32:368–378.PubMedCrossRefGoogle Scholar
  61. 61.
    Reid BJ, Haggitt RC, Rubin EC, et al. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Human Pathol. 1988;19:166–178.CrossRefGoogle Scholar
  62. 62.
    Alikhan M, Rex D, Khan A, et al. Variable pathologic interpretation of columnar lined esophagus by general pathologists in community practice. Gastrointest Endosc. 1999;50(1):23–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Rucker-Schmidt R, Sanchez CA, Blount PL, et al. Non-adenomatous dysplasia in Barrett’s esophagus; a clinical, pathologic and DNA content flow cytometric study. Am J Surg Pathol. 2009;33(6):886–893.PubMedCrossRefGoogle Scholar
  64. 64.
    Lomo L, Blount PL, Sanchez CA, et al. Crypt dysplasia with surface maturation: a clinical, pathologic and molecular study of a Barrett’s esophagus cohort. Am J Surg Pathol. 2006;30(4):423–435.PubMedCrossRefGoogle Scholar
  65. 65.
    Gatenby PA, Ramus JR, Caygill CP, et al. Relevance of the detection of intestinal metaplasia in non-dysplastic columnar-lined oesophagus. Scand J Gastroenterol. 2008;43:524–530.PubMedCrossRefGoogle Scholar
  66. 66.
    Harrison R, Perry I, Haddadin W, et al. Detection of intestinal metaplasia in Barrett’s esophagus: an observational comparator study suggests the need for a minimum of eight biopsies. Am J Gastroenterol. 2007;102:1154–1161.PubMedCrossRefGoogle Scholar
  67. 67.
    Odze RD, Lauwers GY. Histopathology of Barrett’s esophagus after ablation and endoscopic mucosal resection therapy. Endoscopy. 2008;40:1008–1015.PubMedCrossRefGoogle Scholar
  68. 68.
    Berenson MM, Johnson TD, Markowitz NR, et al. Restoration of squamous mucosa after ablation of Barrett’s esophageal epithelium. Gastroenterology. 1993;104:1686–1691.PubMedGoogle Scholar
  69. 69.
    Finkelstein SD, Lyday WD. The molecular pathology of radiofrequency mucosa ablation of Barrett’s esophagus. Gastroenterology. 2008;134:A437.Google Scholar
  70. 70.
    Paulson T, Xu LJ, Sanchez CA, et al. Neosquamous epithelium does not typically arise from Barrett’s epithelium. Clin Cancer Res. 2006;12:1701–1706.PubMedCrossRefGoogle Scholar
  71. 71.
    Pouw RE, Gondrie JJ, Rygiel AM, et al. Properties of the neosquamous epithelium after radiofrequency ablation of Barrett’s esophagus containing neoplasia. Am J Gastroenterol. 2009;104(6):1366–1373.PubMedCrossRefGoogle Scholar
  72. 72.
    Hornick JL, Blount PL, Sanchez CA, et al. Biologic properties of columnar epithelium underneath reepithelialized squamous mucosa in Barrett’s esophagus. Am J Surg Pathol. 2005;29:372–380.PubMedCrossRefGoogle Scholar
  73. 73.
    Hornick JL, Mino-Kenudson M, Lauwers GY, et al. Buried Barrett’s epithelium following photodynamic therapy shows reduced crypt proliferation and absence of DNA content abnormalities. Am J Gastroenterol. 2007;103(1):38–47.PubMedGoogle Scholar
  74. 74.
    Abrams JA, Kapel RC, Lindberg GM, et al. Adherence to biopsy guidelines for Barrett’s esophagus surveillance in the community setting in the United States. Clin Gastroenterol Hepatol. 2009;7:736–742.PubMedCrossRefGoogle Scholar
  75. 75.
    Kariv R, Plesec TP, Goldblum JR, et al. The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol. Clin Gastroenterol Hepatol. 2009;6:653–658.CrossRefGoogle Scholar
  76. 76.
    Shaheen NJ, Crosby MA, Bozymski EM, et al. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology. 2000;119:333–338.PubMedCrossRefGoogle Scholar
  77. 77.
    Labenz J, Nocon M, Lind T, et al. Prospective follow-up data from the ProGERD study suggest that GERD is not a categorial disease. Am J Gastroenterol. 2006;101(11):2457–2462.PubMedGoogle Scholar
  78. 78.
    Skacel M, Petras RE, Gramlich TL, et al. The diagnosis of low-grade dysplasia in Barrett’s esophagus and its implications for disease progression. Am J Gastroenterol. 2000;95:3383–3387.PubMedCrossRefGoogle Scholar
  79. 79.
    Gatenby P, Ramus J, Caygill C, et al. Routinely diagnosed low-grade dysplasia in Barrett’s oesophagus: a population-based study of natural history. Histopathology. 2009;54(7):814–819.PubMedCrossRefGoogle Scholar
  80. 80.
    Lim CH, Treanor D, Dixon MF, Axon AT. Low-grade dysplasia in Barrett’s esophagus has a high risk of progression. Endoscopy. 2007;39(7):581–587.PubMedCrossRefGoogle Scholar
  81. 81.
    Vieth M. Low-grade dysplasia in Barrett’s esophagus—an innocent bystander? Contra Endosc. 2007;39:647–649.CrossRefGoogle Scholar
  82. 82.
    Anderson LA, Murray LJ, Murphy SJ, et al. Mortality in Barrett’s oesophagus: results from a population based study. Gut. 2003;52:1081–1084.PubMedCrossRefGoogle Scholar
  83. 83.
    Fleischer DE, Overholt BF, Sharma VK, et al. Endoscopic ablation of Barrett’s esophagus: a multicenter study with 2.5-year follow-up. Gastrointest Endosc. 2008;68(5):867–876.PubMedCrossRefGoogle Scholar
  84. 84.
    Lyday WD, Corbett FS, Kuperman DA, et al. Radiofrequency ablation of Barrett’s esophagus: outcomes of 429 patients from a multicenter community practice registry. Endoscopy. 2010;42(4):272–278.PubMedCrossRefGoogle Scholar
  85. 85.
    Velanovich V. Endoscopic endoluminal radiofrequency ablation of Barrett’s esophagus: initial results and lessons learned. Surg Endosc. 2009;23(10):2175–2180.PubMedCrossRefGoogle Scholar
  86. 86.
    Eldaif SM, Lin E, Singh KA, et al. Radiofrequency ablation of Barrett’s esophagus: short-term results. Ann Thorac Surg. 2009;87(2):405–410.PubMedCrossRefGoogle Scholar
  87. 87.
    Sharma VK, Kim HJ, Das A, et al. A prospective pilot trial of ablation of Barrett’s esophagus with low-grade dysplasia using stepwise circumferential and focal ablation (HALO system). Endoscopy. 2008;40(5):380–387.PubMedCrossRefGoogle Scholar
  88. 88.
    Sharma VK, Kim HJ, Das A, et al. Circumferential and focal ablation of Barrett’s esophagus containing dysplasia. Am J Gastroenterol. 2009;104(2):310–317.PubMedCrossRefGoogle Scholar
  89. 89.
    Finkelstein SD, Lyday WD. The molecular pathology of radiofrequency mucosal ablation of Barrett’s esophagus. Gastroenterology. 2008;134:A436.Google Scholar
  90. 90.
    Vij R, Triadafilopoulos G, Owens DK, Kunz P, Sanders GD. Cost-effectiveness of photodynamic therapy for high-grade dysplasia in Barrett’s esophagus. Gastrointest Endosc. 2004;60(5):739–756.PubMedCrossRefGoogle Scholar
  91. 91.
    Shaheen NJ, Inadomi JM, Overholt BF, Sharma P. What is the best management strategy for high-grade dysplasia in Barrett’s oesophagus? A cost-effectiveness analysis. Gut. 2004;53(12):1736–1744.PubMedCrossRefGoogle Scholar
  92. 92.
    Ragunath K, Krasner N, Raman VS, et al. Endoscopic ablation of dysplastic Barrett’s oesophagus comparing argon plasma coagulation and photodynamic therapy: a randomized prospective trial assessing efficacy and cost-effectiveness. Scand J Gastroenterol. 2005;40(7):750–758.PubMedCrossRefGoogle Scholar
  93. 93.
    Das A, Wells C, Kim HJ, et al. An economic analysis of endoscopic ablative therapy for management of nondysplastic Barrett’s esophagus. Endoscopy. 2009;41(5):400–408.PubMedCrossRefGoogle Scholar
  94. 94.
    Inadomi JM, Somsouk M, Madanick RD, et al. A cost-utility analysis of ablative therapy for Barrett’s esophagus. Gastroenterology. 2009;136:2101–2114.PubMedCrossRefGoogle Scholar
  95. 95.
    Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 2008;134:1570–1595.PubMedCrossRefGoogle Scholar
  96. 96.
    Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–1981.PubMedCrossRefGoogle Scholar
  97. 97.
    Leung K, Pinsky P, Laiyemo AO, et al. Ongoing colorectal cancer risk despite surveillance colonoscopy: the Polyp Prevention Trial Continued Follow-up Study. Gastrointest Endosc. 2010;71(1):111–117.PubMedCrossRefGoogle Scholar
  98. 98.
    Robertson DJ, Greenberg ER, Beach M, et al. Colorectal cancer in patients under close colonoscopic surveillance. Gastroenterology. 2005;129:34–41.PubMedCrossRefGoogle Scholar
  99. 99.
    Ragunath K, Krasner N, Raman VA, et al. Endoscopic ablation of dysplastic Barrett’s oesophagus comparing argon plasma coagulation and photodynamic therapy: a randomized prospective trial assessing efficacy and cost-effectiveness. Scand J Gastroenterol. 2005;40:750–758.PubMedCrossRefGoogle Scholar
  100. 100.
    Attwood SE, Lewis CJ, Caplin S, et al. Argon beam plasma coagulation as therapy for high-grade dysplasia in Barrett’s esophagus. Clin Gastroenterol Hepatol. 2003;1:258–263.PubMedCrossRefGoogle Scholar
  101. 101.
    Wani S, Sayana H, Sharma P. Endoscopic eradication of Barrett’s esophagus. Gastrointest Endosc. 2010;71(1):147–166.PubMedCrossRefGoogle Scholar
  102. 102.
    Watson DI, Foreman D, Devitt PG, Jamieson GG. Preoperative grading of esophagitis versus outcome following laparoscopic Nissen fundoplication. Am J Gastroenterol. 1997;92:222–225.PubMedGoogle Scholar
  103. 103.
    Landreau RJ, Wiechmann RJ, Hazelrigg SR, et al. Success of laparoscopic fundoplication for gastroesophageal reflux disease. Ann Thorac Surg. 1998;66:1886–1893.CrossRefGoogle Scholar
  104. 104.
    Ozmen V, Oran ES, Gorgun E, et al. Histologic and clinical outcome after laparoscopic Nissen fundoplication for gastroesophageal reflux disease and Barrett’s esophagus. Surg Endosc. 2006;20(2):226–229.PubMedCrossRefGoogle Scholar
  105. 105.
    dos Santos RS, Bizekis C, Ebright M, et al. Radiofrequency ablation for Barrett’s esophagus and low-grade dysplasia in combination with an antireflux procedure: a new paradigm. J Thorac Cardiovasc Surg. 2010;139(3):713–716.PubMedCrossRefGoogle Scholar
  106. 106.
    Triadafilopoulos G. Blitzkreig for Barrett’s esophagus containing early neoplasia. Clin Gastroenterol Hepatol. 2010;8:7–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David E. Fleischer
    • 1
  • Robert Odze
    • 2
  • Bergein F. Overholt
    • 3
  • John Carroll
    • 4
  • Kenneth J. Chang
    • 5
  • Ananya Das
    • 1
  • John Goldblum
    • 6
  • Daniel Miller
    • 7
  • Charles J. Lightdale
    • 8
  • Jeffrey Peters
    • 9
  • Richard Rothstein
    • 10
  • Virender K. Sharma
    • 11
  • Daniel Smith
    • 12
  • Victor Velanovich
    • 13
  • Herbert Wolfsen
    • 14
  • George Triadafilopoulos
    • 15
  1. 1.Department of Internal MedicineMayo Clinic in ArizonaScottsdaleUSA
  2. 2.Department of PathologyBrigham and Women’s HospitalBostonUSA
  3. 3.Gastrointestinal AssociatesKnoxvilleUSA
  4. 4.Department of Internal MedicineGeorgetown UniversityWashingtonUSA
  5. 5.University of California IrvineOrangeUSA
  6. 6.Department of PathologyCleveland Clinic FoundationClevelandUSA
  7. 7.Department of SurgeryEmory University Medical CenterAtlantaUSA
  8. 8.Department of Internal MedicineColumbia Presbyterian HospitalNew YorkUSA
  9. 9.Department of SurgeryUniversity of RochesterRochesterUSA
  10. 10.Department of Internal MedicineDartmouth Hitchcock Medical CenterLebanonUSA
  11. 11.Az Center for Digestive HealthGilbertUSA
  12. 12.Department of SurgeryMayo Clinic in FloridaJacksonvilleUSA
  13. 13.Department of SurgeryHenry Ford HospitalDetroitUSA
  14. 14.Department of Internal MedicineMayo Clinic in FloridaJacksonvilleUSA
  15. 15.Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordUSA

Personalised recommendations