Digestive Diseases and Sciences

, Volume 55, Issue 10, pp 2744–2755

Serum Markers of Hepatocellular Carcinoma

  • Giulia Malaguarnera
  • Maria Giordano
  • Isabella Paladina
  • Massimiliano Berretta
  • Alessandro Cappellani
  • Mariano Malaguarnera
Review

Abstract

Background

The hepatocellular carcinoma is one of the most common malignant tumors and carries a poor survival rate. The management of patients at risk for developing HCC remains intricate.

Methods

A literature search identified potential markers for hepatocellular carcinoma. These markers were analysed and justification was provided for these factors’ inclusion to (or exclusion from) the markers of hepatocellular carcinoma (HCC). A search of the literature was made using cancer literature and the PubMed database for the following keywords: “markers and HCC,” “Lens culinaris agglutinin reactive AFP (AFP-L3) and HCC,” “Des-γ-carboxy prothrombin (DCP) and HCC,” “Glypican-3 and HCC,” “Chromogranin A and HCC,” “Transforming growth factor β1(TGF) and HCC,” “α-l-fucosidase (AFU) and HCC,” “Golgi protein-73 (GP73) and HCC,” “Hepatocyte growth factor (HGF) and HCC,” “Nervous growth factor (NGF) and HCC.”

Conclusions

Despite the large number of studies devoted to the immunohistochemistry of HCC, at the present time, the absolute positive and negative markers for HCC are still lacking, and even those characterized by very high sensitivity and specificity do not have an universal diagnostic usefulness. Given the poor response to current therapies, a better understanding of the molecular pathways active in this disease could potentially provide new targets for therapy. However, AFP shows a low sensitivity, therefore other biomarkers have been developed to make an early diagnosis and improve patients’ prognosis.

Keywords

Hepatocellular carcinoma Alpha-fetoprotein (AFP) Lens culinaris agglutinin reactive AFP (AFP-L3) Des-γ-carboxy prothrombin (DCP) Glypican-3 (GPC3) Chromogranin-A(CgA) Transforming growth factor β1 (TGF-β1) Alfa-l-fucosidase (AFU) Golgi protein 73 (GP73) 

References

  1. 1.
    Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9:191–211.PubMedCrossRefGoogle Scholar
  2. 2.
    Buck J, Miller RH, Kew MC, Purcell R. Hepatitis C virus RNA in southern African blacks with hepatocellular carcinoma. Proc Natl Acad Sci USA. 1993;90:1848–1851.CrossRefGoogle Scholar
  3. 3.
    Malaguarnera M, Di Fazio I, Laurino A, Pistone G, Restuccia S, Trovato BA. Decrease of interferon gamma serum levels in patients with chronic hepatitis C. Biomed Pharmacother. 1997;51:391–396.PubMedCrossRefGoogle Scholar
  4. 4.
    Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J Mol Med. 2009;87:679–695.PubMedCrossRefGoogle Scholar
  5. 5.
    Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol. 2005;42:585–591.PubMedCrossRefGoogle Scholar
  6. 6.
    Malaguarnera L, Rosa MD, Zambito AM, dell’Ombra N, Marco RD, Malaguarnera M. Potential role of chitotriosidase gene in non-alcoholic fatty liver disease evolution. Am J Gastroenterol. 2006;101:2060–2069.PubMedCrossRefGoogle Scholar
  7. 7.
    Malaguarnera L, Di Rosa M, Zambito AM, dell’Ombra N, Nicoletti F, Malaguarnera M. Chitotriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease. Gut. 2006;55:1313–1320.PubMedCrossRefGoogle Scholar
  8. 8.
    Malaguarnera M, Trovato G, Restuccia S, et al. Treatment of nonresectable hepatocellular carcinoma: review of the literature and meta-analysis. Adv Therapy. 1994;11:303–319.Google Scholar
  9. 9.
    Terentiev AA, Moldogazieva NT. Structural and functional mapping of alpha-fetoprotein. Biochemistry (Mosc). 2006;71:120–132.CrossRefGoogle Scholar
  10. 10.
    Mizejewski GJ. Biological role of alpha-fetoprotein in cancer: prospects for anticancer therapy. Expert Rev Anticancer Ther. 2002;2:709–735.PubMedCrossRefGoogle Scholar
  11. 11.
    Saffroy R, Pham P, Reffas M, Takka M, Lemoine A, Debuire B. New perspectives and strategy research biomarkers for hepatocellular carcinoma. Clin Chem Lab Med. 2007;45:1169–1179.PubMedCrossRefGoogle Scholar
  12. 12.
    Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European association for the study of the liver. J Hepatol. 2001;35:421–430.PubMedCrossRefGoogle Scholar
  13. 13.
    Han SJ, Yoo S, Choi SH, Hwang EH. Actual half-life of alpha-fetoprotein as a prognostic tool in pediatric malignant tumors. Pediatr Surg Int. 1997;12:599–602.PubMedCrossRefGoogle Scholar
  14. 14.
    Oka H, Saito A, Ito K, et al. Multicenter prospective analysis of newly diagnosed hepatocellular carcinoma with respect to the percentage of Lens culinaris agglutinin-reactive alpha-fetoprotein. J Gastroenterol Hepatol. 2001;16:1378–1383.PubMedCrossRefGoogle Scholar
  15. 15.
    Sato Y, Nakata K, Kato Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med. 1993;328:1802–1806.PubMedCrossRefGoogle Scholar
  16. 16.
    Miyaaki H, Nakashima O, Kurogi M, Eguchi K, Kojiro M. Lens culinaris agglutinin-reactive alpha-fetoprotein and protein induced by vitamin K absence II are potential indicators of a poor prognosis: a histopathological study of surgically resected hepatocellular carcinoma. J Gastroenterol. 2007;42:962–968.PubMedCrossRefGoogle Scholar
  17. 17.
    Aoyagi Y, Suzuki Y, Isemura M, et al. The fucosylation index of alpha-fetoprotein and its usefulness in the early diagnosis of hepatocellular carcinoma. Cancer. 1988;61:769–774.PubMedCrossRefGoogle Scholar
  18. 18.
    Taketa K. Alpha-fetoprotein: reevaluation in hepatology. Hepatology. 1990;12:1420–1432.PubMedCrossRefGoogle Scholar
  19. 19.
    Sassa T, Kumada T, Nakano S, Uematsu T. Clinical utility of simultaneous measurement of serum high-sensitivity des-gamma-carboxy prothrombin and Lens culinaris agglutinin A-reactive alpha-fetoprotein in patients with small hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 1999;11:1387–1392.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamashita F, Tanaka M, Satomura S, Tanikawa K. Prognostic significance of Lens culinaris agglutinin A-reactive alpha-fetoprotein in small hepatocellular carcinomas. Gastroenterology. 1996;111:996–1001.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuromatsu R, Tanaka M, Tanikawa K. Serum alpha-fetoprotein and lens culinaris agglutinin-reactive fraction of alpha-fetoprotein in patients with hepatocellular carcinoma. Liver. 1993;13:177–182.PubMedGoogle Scholar
  22. 22.
    Hayashi K, Kumada T, Nakano S, et al. Usefulness of measurement of Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein as a marker of prognosis and recurrence of small hepatocellular carcinoma. Am J Gastroenterol. 1999;94:3028–3033.PubMedGoogle Scholar
  23. 23.
    Yamashita F, Tanaka M, Satomura S, Tanikawa K. Monitoring of lectin-reactive alpha-fetoproteins in patients with hepatocellular carcinoma treated using transcatheter arterial embolization. Eur J Gastroenterol Hepatol. 1995;7:627–633.PubMedGoogle Scholar
  24. 24.
    Yamashiki N, Seki T, Wakabayashi M, et al. Usefulness of Lens culinaris agglutinin A-reactive fraction of alpha-fetoprotein (AFP-L3) as a marker of distant metastasis from hepatocellular carcinoma. Oncol Rep. 1999;6:1229–1232.PubMedGoogle Scholar
  25. 25.
    Yamashita F, Tanaka M, Satomura S, Tanikawa K. Prognostic significance of Lens culinaris agglutinin A-reactive alpha-fetoprotein in small hepatocellular carcinoma. Gastroenterology. 1996;111:996–1001.PubMedCrossRefGoogle Scholar
  26. 26.
    Ono M, Ohat H, Ohhira M, et al. Measurement of immunoreactive prothrombin precursor and vitamin-K-dependent gamma-carboxylation in human hepatocellular tissues: decreased carboxylation of prothrombin precursor as a cause of des-gamma-carboxyprothrombin synthesis. Tumour Biol. 1990;11(6):319–326.PubMedCrossRefGoogle Scholar
  27. 27.
    Grizzi F, Franceschini B, Hamrick C, Frezza EE, Cobos E, Chiriva-Internati M. Usefulness of cancer-testis antigens as biomarkers for the diagnosis and treatment of hepatocellular carcinoma. J Transl Med. 2007;5:3.PubMedCrossRefGoogle Scholar
  28. 28.
    Nakagawa T, Seki T, Shiro T, et al. Clinicopathologic significance of protein induced by vitamin k absence or antagonistic II and alpha-fetoprotein in hepatocellular carcinoma. Int J Oncol. 1999;14:281–286.PubMedGoogle Scholar
  29. 29.
    Fujiyama S, Tanaka M, Maeda S, et al. Tumormarkers in early diagnosis, follow-up and management of patients with hepatocellular carcinoma. Oncology. 2002;62:57–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Suehiro T, Sugimachi K, Matsumata T, Itasaka H, Taketomi A, Maeda T. Protein induced by vitamin K absence or antagonist II (PIVKA-II) as a prognostic marker in hepatocellular carcinoma: comparison with a-fetoprotein. Cancer. 1994;73:2464–2471.PubMedCrossRefGoogle Scholar
  31. 31.
    Toyosaka A, Okamoto E, Mitsunobu M, Oriyama T, Nakao N, Miura K. Intrahepatic metastases in hepatocellular carcinoma: evidence for spread via the portal vein as an efferent vessel. Am J Gastroenterol. 1996;91:1610–1615.PubMedGoogle Scholar
  32. 32.
    Mitsunobu M, Toyosaka A, Oriyama T, Okamoto E, Nakao N. Intrahepatic metastases in hepatocellular carcinoma: the role of the portal vein as an efferent vessel. Clin Exp Metastasis. 1996;14:520–529.PubMedCrossRefGoogle Scholar
  33. 33.
    Fujikawa T, Shiraha H, Ueda N, et al. Des-gamma-carboxyl prothrombin-promoted vascular endothelial cell proliferation and migration. J Biol Chem. 2007;282:8741–8748.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki M, Shiraha H, Fujikawa T, et al. Des-gamma-carboxyl prothrombin is a potential autologous growth factor for hepatocellular carcinoma. J Biol Chem. 2005;280:6409–6415.PubMedCrossRefGoogle Scholar
  35. 35.
    Bernfield M, Götte M, Park PW, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777.PubMedCrossRefGoogle Scholar
  36. 36.
    Song HH, Shi W, Filmus J. OCI-5/rat glypican-3 binds to fibroblast growth factor-2 but not to insulin-like growth factor-2. J Biol Chem. 1997;272:7574–7577.PubMedCrossRefGoogle Scholar
  37. 37.
    Reich-Slotky R, Bonneh-Barkay D, Shaoul E, Bluma B, Svahn CM, Ron D. Differential effect of cell-associated heparan sulfates on the binding of keratinocyte growth factor (KGF) and acidic fibroblast growth factor to the KGF receptor. J Biol Chem. 1994;269:32279–32285.PubMedGoogle Scholar
  38. 38.
    Pilia G, Hughes-Benzie RM, MacKenzie A, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996;12:241.PubMedCrossRefGoogle Scholar
  39. 39.
    Hsue HC, Cheng W, Pl Lai. Cloning and expression of a developmentally regulated transcripts MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res. 1997;57:5179–5184.Google Scholar
  40. 40.
    Zhu ZW, Friess H, Wang L, et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 2001;48:558–564.PubMedCrossRefGoogle Scholar
  41. 41.
    Hagihara K, Watanabe K, Yamaguchi J. Glypican-4 is an FGF2-binding heparan sulfate proteoglycans expressed in neural precursor cells. Dev Dyn. 2000;219:353–367.PubMedCrossRefGoogle Scholar
  42. 42.
    Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D. Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF 165. J Biol Chem. 1999;274:10816–10822.PubMedCrossRefGoogle Scholar
  43. 43.
    Knapp LT, Klann E. Superoxide- induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem. 2000;275:24136–24145.PubMedCrossRefGoogle Scholar
  44. 44.
    Suzuki A, Hirata M, Kamimura K, et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol. 2004;14:1425–1435.PubMedCrossRefGoogle Scholar
  45. 45.
    Eder AM, Sui X, Rosen DG, et al. Atypical PKCiota contributes to poor prognosis through loss of apical–basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA. 2005;102:12519–12524.PubMedCrossRefGoogle Scholar
  46. 46.
    Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP. Atypical protein kinase C iota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem. 2005;280:31109–31115.PubMedCrossRefGoogle Scholar
  47. 47.
    Ikeguchi M, Makino M, Kaibara N. Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. J Surg Oncol. 2001;77:201–207.PubMedCrossRefGoogle Scholar
  48. 48.
    Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg. 2000;87:992–1005.PubMedCrossRefGoogle Scholar
  49. 49.
    Shiozaki H, Oka H, Inoue M, Tamura S, Monden M. E-cadherin mediated adhesion system in cancer cells. Cancer. 1996;77:1605–1613.PubMedGoogle Scholar
  50. 50.
    Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspots in the p53 gene in human hepatocellular carcinomas. Nature. 1991;350:427–428.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu S, Ma L, Huang W, et al. Decreased expression of the human carbonyl reductase 2 Gene HCR2 in hepatocellular carcinoma. Cell Mol Biol Lett. 2006;11:230–241.PubMedCrossRefGoogle Scholar
  52. 52.
    Haidon GH, Hayes PC. Screening for hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 1996;8:856–860.Google Scholar
  53. 53.
    Deugnier Y, David V, Bressot P, et al. Serum α-L-fucosidase: a new marker for the diagnosis of primary hepatic carcinoma? Hepatology. 1984;4:889–892.PubMedCrossRefGoogle Scholar
  54. 54.
    Leray G, Deugnier Y, Jouanolle AM, et al. Biochemical aspects of α-L-fucosidase in hepatocellular carcinoma. Hepatology. 1989;9:249–252.PubMedCrossRefGoogle Scholar
  55. 55.
    Giardina MG, Matarazzo M, Varriale A, Morante R, Napoli A, Martino R. Serum alpha-L-fucosidase. A useful marker in the diagnosis of hepatocellular carcinoma. Cancer. 1992;70:1044–1048.PubMedCrossRefGoogle Scholar
  56. 56.
    Ishizuka H, Nakayama T, Matsuoka S, et al. Prediction of the development of hepato-cellular-carcinoma in patients with liver cirrhosis by the serial determinations of serum alpha-L-fucosidase activity. Intern Med. 1999;38:927–931.PubMedCrossRefGoogle Scholar
  57. 57.
    Mattern J, Koomagi R, Volm M. Association of vascular endothelial growth factor expression with intratumoural microvessel density and tumor cell proliferation in human epidermoid lung carcinoma. Br J Cancer. 1996;73:931–934.PubMedGoogle Scholar
  58. 58.
    Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinoma of gastrointestinal tract. Cancer Res. 1993;53:4727–4735.PubMedGoogle Scholar
  59. 59.
    Toi M, Hoshina S, Takayanagi T, et al. Association of vascular endothelial growth factor expression with tumour angiogenesis and early relapse in primary breast cancer. Jpn J Cancer Res. 1994;85:1045–1049.PubMedGoogle Scholar
  60. 60.
    Suzuki K, Hayashi M, Miyamaoto Y, et al. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res. 1996;56:3004–3009.PubMedGoogle Scholar
  61. 61.
    Mise M, Arii S, Higashituji H, Furutani M, et al. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology. 1996;23:455–464.PubMedCrossRefGoogle Scholar
  62. 62.
    Mohle R, Green D, Moore MAS, et al. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA. 1997;94:663–668.PubMedCrossRefGoogle Scholar
  63. 63.
    Li XM, Tang ZY, Qin LX, Zhou J, Sun HC. Serum vascular endothelial growth factor is a predictor of invasion and metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res. 1999;18:511–517.PubMedGoogle Scholar
  64. 64.
    Suminami Y, Kishi F, Sekiguchi K, Kato H. Squamous cell carcinoma antigen is a new member of the serine protease inhibitors. Biochem Biophys Res Commun. 1991;181:51–58.PubMedCrossRefGoogle Scholar
  65. 65.
    Kato H, Suehiro Y, Morioka H, et al. Heterogeneous distribution of acidic TA-4 in cervical squamous cell carcinoma: immunohistochemical demonstration with monoclonal antibodies. Jpn J Cancer Res. 1987;78:1246–1250.PubMedGoogle Scholar
  66. 66.
    Giannelli G, Marinosci F, Sgarra C, Lupo L, Dentico P, Antonaci S. Clinical role of tissue and serum levels of SCCA antigen in hepatocellular carcinoma. Int J Cancer. 2005;10(116):579–583.CrossRefGoogle Scholar
  67. 67.
    Uemura Y, Pak SC, Luke C, Cataltepe S, Tsu C, Schick C, Kamachi Y, Pomeroy SL, Perlmutter DH, Silverman GA. Circulating serpin tumor markers SCCA1 and SCCA2 are not actively secreted but reside in the cytosol of squamous carcinoma cells. Int J Cancer. 2000;89:368–377.PubMedCrossRefGoogle Scholar
  68. 68.
    Deftos LJ. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker. Endocr Rev. 1991;12:181–187.PubMedCrossRefGoogle Scholar
  69. 69.
    Leone N, Pellicano R, Brunello F, Rizzetto M, Ponzetto A. Elevated serum chromogranin A in patients with hepatocellular carcinoma. Clin Exp Med. 2002;2:119–123.PubMedCrossRefGoogle Scholar
  70. 70.
    Ranno S, Motta M, Rampello E, Risino C, Bennati E, Malaguarnera M. The chromogranin-A(CgA) in prostate cancer. Arch Gerontol Geriatr. 2006;43:117–126.PubMedCrossRefGoogle Scholar
  71. 71.
    Malaguarnera M, Cristaldi E, Cammalleri L, et al. Elevated chromogranin A (CgA) serum levels in the patients with advanced pancreatic cancer. Arch Gerontol Geriatr. 2009;48:213–217.PubMedCrossRefGoogle Scholar
  72. 72.
    Spadaro A, Ajello A, Morace C, et al. Serum chromogranin-A in hepatocellular carcinoma: diagnostic utility and limits. World J Gastroenterol. 2005;11:1987–1990.PubMedGoogle Scholar
  73. 73.
    Malaguarnera M, Vacante M, Fichera R, Cappellani A, Cristaldi E, Motta M. Chromogranin A (CgA) serum level as a marker of progression in hepatocellular carcinoma (HCC) of elderly patients. Arch Gerontol Geriatr. 2009;PMID 19766330 (in press).Google Scholar
  74. 74.
    Wilander E, Lundqvist M, Oberg K. Gastrointestinal carcinoid tumours. Histogenetic, histochemical, immunohistochemical, clinical and therapeutic aspects. Prog Histochem Cytochem. 1989;19:1–88.PubMedGoogle Scholar
  75. 75.
    Hsiao RJ, Parmer RJ, Takiyyuddin MA, O’Connor DT. Chromogranin A storage and secretion: sensitivity and specificity for the diagnosis of pheochromocytoma. Medicine. 1991;70:33–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Malaguarnera L, Pignatelli S, Simporè J, Malaguarnera M, Musumeci S. Plasma levels of interleukin-12 (IL-12), interleukin-18 (IL-18) and transforming growth factor beta (TGF-beta) in Plasmodium falciparum malaria. Eur Cytokine Netw. 2002;13:425–430.PubMedGoogle Scholar
  77. 77.
    Bedossa P, Peltier E, Terries B, Franco D, Poynard T. Transforming growth factor -β1 (TGF-β1) and TGF-β1 receptors in normal, cirrhotic and neoplastic human livers. Hepatology. 1995;21:760–766.PubMedGoogle Scholar
  78. 78.
    Ito N, Kawata S, Tamura S, et al. Expression of transforming growth factor β1 mRNA in human hepatocellular carcinoma. Jpn J Cancer Res. 1990;81:1202–1205.PubMedGoogle Scholar
  79. 79.
    Grizzi F, Franceschini B, Hamrick C, et al. Usefulness of cancer-testis antigens as biomarkers for the diagnosis and treatment of hepatocellular carcinoma. J Transl Med. 2007;5:3.PubMedCrossRefGoogle Scholar
  80. 80.
    Mann CD, Neal CP, Garcea G, et al. Prognostic molecular markers in hepatocellular carcinoma: a systematic review. Eur J Cancer. 2007;43:979–992.PubMedCrossRefGoogle Scholar
  81. 81.
    Ko TC, Tu W, Sakai T, et al. TGF-β1 effects on proliferation of rat intestinal epithelial cells are due to inhibition of cyclin D1 expression. Oncogene. 1998;16:3445–3454.PubMedCrossRefGoogle Scholar
  82. 82.
    Izzo JG, Papadimitrakopoulou VA, Li XQ, et al. Dysregulated cyclin D1 expression early in head and neck tumorigenesis: in vivo evidence for an association with subsequent gene amplification. Oncogene. 1998;17:2313–2322.PubMedCrossRefGoogle Scholar
  83. 83.
    Seewaldt VL, Kim JH, Parker MB, Dietze EC, Vasan KV, Caldwell LE. Dysregulated expression of cyclin D1 in normal human mammary epithelial cells inhibits all-trans-retinoic acid-mediated G0/G1-phase arrest and differentiation in vitro. Exp Cell Res. 1999;249:70–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Kladney RD, Bulla GA, Guo L, et al. GP73, a novel Golgi-localized protein upregulated by viral infection. Gene. 2000;249:53–65.PubMedCrossRefGoogle Scholar
  85. 85.
    Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ. Expression of GP73, a resident membrane protein, in viral and non-viral liver disease. Hepatology. 2002;35:1431–1440.PubMedCrossRefGoogle Scholar
  86. 86.
    Block TM, Comunale MA, Lowman M, et al. Use of targeted glycoproteins that correlated with liver cancer in woodchucks and humans. Proc Natl Acad Sci USA. 2005;102:779–784.PubMedCrossRefGoogle Scholar
  87. 87.
    Comunale MA, Mattu TS, Lowman MA, et al. Comparative proteomic analysis of de-N-glycosylated serum from hepatitis B carriers reveals polypeptides that correlate with disease status. Proteomics. 2004;4:826–838.PubMedCrossRefGoogle Scholar
  88. 88.
    Nakamura T. Hepatocyte growth factor as mitogen, motogen and morphogen and its roles in organ regeneration. Princess Takamatsu Symp. 1994;24:195–213.PubMedGoogle Scholar
  89. 89.
    Birchmeier C, Gherardi E. Development roles of HGF/SF and its receptor c-Met tyrosine kinase. Trends Cell Biol. 1998;8:404–410.PubMedCrossRefGoogle Scholar
  90. 90.
    El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340:745–750.PubMedCrossRefGoogle Scholar
  91. 91.
    Schneider PD. Preoperative assessment of liver function. Surg Clin North Am. 2004;84:355–373.PubMedCrossRefGoogle Scholar
  92. 92.
    Breuhan K, Longerich T, Schirmacher P. Dysregulation of growth factor signalling in human hepatocellular carcinoma. Oncogene. 2006;25:3787–3800.CrossRefGoogle Scholar
  93. 93.
    Yamagamim H, Moriyana M, Matsumura H, et al. Serum concentrations of human hepatocyte growth factor is a useful indicator for predicting the occurrence of hepatocellular carcinomas in C-viral chronic liver diseases. Cancer. 2002;95:824–834.PubMedCrossRefGoogle Scholar
  94. 94.
    Mizuguchi T, Katsuramachi T, Nobuoka T, et al. Serum hyaluronate level for predicting subclinical liver dysfunction after hepatectomy. World J Surg. 2004;28:971–976.PubMedCrossRefGoogle Scholar
  95. 95.
    Wu FS, Zheng SS, Wu LJ, et al. Study on the prognostic value of hepatocyte growth factor and c-met for patients with hepatocellular carcinoma. Zhongua Wai Ke Za Zhi. 2006;44:603–608.Google Scholar
  96. 96.
    Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70:523–526.PubMedCrossRefGoogle Scholar
  97. 97.
    Gannon JV, Greaves R, Iggo R, Lane DP. Activating mutations in p53 produce a common conformational effect-a monoclonal antibody specific for the mutant form. EMBO J. 1990;9:1595–1602.PubMedGoogle Scholar
  98. 98.
    Hsu H-C, Tseng H-J, Lai P-L, Lee P-H, Peng S-Y. Expression of p53 gene in 184 unifocal hepatocellular carcinoma: association with tumor growth and invasiveness. Cancer Res. 1993;53:4691–4694.PubMedGoogle Scholar
  99. 99.
    Hayashi H, Sugio K, Matsumata T, Adachi E, Takenaka K, Sugimachi K. The clinical significance of p53 gene mutation in hepatocellular carcinomas from Japan. Hepatology. 1995;22:1702–1707.PubMedGoogle Scholar
  100. 100.
    Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against cellular protein p53 in sera from patients with breast cancer. Int J Cancer. 1982;30:403–408.PubMedCrossRefGoogle Scholar
  101. 101.
    Winter SF, Minna JD, Johnson BE, Takahashi T, Gazdar AF, Carbone DP. Development of antibodies against p53 in lung cancer patients appears to be dependent on the type of p53 mutation. Cancer Res. 1992;52:4168–4174.PubMedGoogle Scholar
  102. 102.
    Schlichtholz RLB, Bengoufa D, Zalcman BG, et al. Analysis of p53 antibodies in patients with various cancer define B-cell epitopes of human p53: distribution on primary structure and exposure on protein surface. Cancer Res. 1993;53:5872–5876.PubMedGoogle Scholar
  103. 103.
    Bressac B, Kew M, Wands J, Ozturk M. Selective G to mutations of p53 gene in HCC from southern Africa. Nature. 1991;350:429–431.PubMedCrossRefGoogle Scholar
  104. 104.
    Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995;18:223–253.PubMedCrossRefGoogle Scholar
  105. 105.
    Gregor LM, McCune BK, Graff JR, et al. Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA. 1990;96:4540–4545.CrossRefGoogle Scholar
  106. 106.
    Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol. 2002;67:203–233.PubMedCrossRefGoogle Scholar
  107. 107.
    Chapman BS. A region of the 75-kDa neurotrophin receptor homologous to the death domains of TNFR-I and Fas. FEBS Lett. 1995;374:216–220.PubMedCrossRefGoogle Scholar
  108. 108.
    Tokusashi Y, Asai K, Tamakawa S, et al. Expression of NGF in hepatocellular carcinoma cells with its receptors in non-tumor cell components. Int J Cancer. 2005;114:39–45.PubMedCrossRefGoogle Scholar
  109. 109.
    Trim N, Morgan S, Evans M, et al. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am J Pathol. 2000;156:1235–1243.PubMedGoogle Scholar
  110. 110.
    Cassiman D, Roskams TJ. Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. Hepatol. 2002;37:527–535.CrossRefGoogle Scholar
  111. 111.
    Rasi G, Serafino A, Bellis L, et al. Nerve growth factor involvement in liver cirrhosis and hepatocellular carcinoma. World J Gastroenterol. 2007;13:4986–4995.PubMedGoogle Scholar
  112. 112.
    Preissner KT, Jenne D. Vitronectin: a new molecular connection in haemostasis. Thromb Haemost. 1991;66:189–194.PubMedGoogle Scholar
  113. 113.
    Musso O, Theret N, Campion SP, et al. In situ detection of matrix metalloproteinase-2 (MMP2) and metalloproteinase inhibitor TIMP2 transcripts in human primary hepatocellular carcinoma and in liver metastasis. J Hepatol. 1997;26:593–605.PubMedCrossRefGoogle Scholar
  114. 114.
    Malaguarnera L, Ferlito L, Di Mauro S, Imbesi RM, Scalia G, Malaguarnera M. Immunosenescence and cancer: a review. Arch Gerontol Geriatrics. 2001;32:77–93.CrossRefGoogle Scholar
  115. 115.
    Evrin PE, Wibell L. Serum β-2 microglobulin in various disorders. Clin Chim Acta. 1973;43:183–186.PubMedCrossRefGoogle Scholar
  116. 116.
    Weistal R, Norkrans G, Weiland O, et al. Lymphocyte subsets and β2-microglobulin expression in chronic hepatitis C/non-A. non-B. Effects of interferon-alpha treatment. Clin Exp Immunol. 1992;87:340–345.CrossRefGoogle Scholar
  117. 117.
    Malaguarnera M, Restuccia S, Di Fazio I, Zoccolo AM, Trovato BA, Pistone G. Serum beta-2 microglobulin in chronic hepatitis C. Dig Dis Sci. 1997;42:762–766.PubMedCrossRefGoogle Scholar
  118. 118.
    Motta M, Giugno I, Ruello P, Pistone G, Di Fazio I, Malaguarnera M. Lipoprotein (a) behaviour in patients with hepatocellular carcinoma. Minerva Medica. 2001;92:301–305.PubMedGoogle Scholar
  119. 119.
    Malaguarnera M, Di Fazio I, Laurino A, Motta M, Giugno I, Trovato B. A Ròle de interleukine-6 dans le carcinome hèpatocellulaire. Bull Cancer. 1996;83:379–384.PubMedGoogle Scholar
  120. 120.
    Malaguarnera M, Di Fazio I, Ferlito L, et al. Increase of serum β-2 microglobulin in patients affected by HCV correlated hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2000;12:1–3.CrossRefGoogle Scholar
  121. 121.
    Ni RZ, Huang JF, Xiao MB, et al. Glycylproline dipeptidyl aminopeptidase isoenzyme in diagnosis of primary hepatocellular carcinoma. World J Gastroenterol. 2003;9:710–713.PubMedGoogle Scholar
  122. 122.
    Vinci E, Rampello E, Zanoli L, Oreste G, Pistone G, Malaguarnera M. Serum carnitine levels in patients with tumoral cachexia. Eur J Intern Med. 2005;16:419–423.PubMedCrossRefGoogle Scholar
  123. 123.
    Malaguarnera M, Laurino A, Di Mauro S, Motta M, Di Fazio I, Maugeri D. The comorbidities of elderly oncologic patients. Arch Gerontol Geriatr. 2000;30:237–244.CrossRefGoogle Scholar
  124. 124.
    Motta M, Ferlito L, Malaguarnera L, et al. Alterations of the lymphocytic set-up in elderly patients with cancer. Arch Gerontol Geriatr. 2003;36:7–14.PubMedCrossRefGoogle Scholar
  125. 125.
    Motta M, Pistone G, Franzone AM, et al. Antibodies against ox-LDL serum levels in patients with hepatocellular carcinoma. Panminerva Med. 2003;45:69–73.PubMedGoogle Scholar
  126. 126.
    Malaguarnera L, Cristaldi E, Malaguarnera M (2009) The role of immunity in elderly cancer. Crit Rev Oncol Hematol. PMID 19577481.Google Scholar
  127. 127.
    Liaw YF, Tai DI, Chen TJ, Chu CM, Huang MJ. Alpha-fetoprotein changes in the course of chronic hepatitis: relation to bridging hepatic necrosis and hepatocellular carcinoma. Liver. 1986;6:133–137.PubMedGoogle Scholar
  128. 128.
    Malaguarnera M, Gargante MP, Fricia T, Rampello E, Risino C, Romano M. Hepatitis C virus in elderly cancer patients. Eur J Intern Med. 2006;17:325–329.PubMedCrossRefGoogle Scholar
  129. 129.
    Noda K, Miyoshi E, Uozumi N, et al. Gene expression of alpha1–6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein. Hepatology. 1998;28:944–952.PubMedCrossRefGoogle Scholar
  130. 130.
    Guido M, Roskams T, Pontisso P, et al. Squamous cell carcinoma antigen in human liver carcinogenesis. J Clin Pathol. 2008;61:445–447.PubMedCrossRefGoogle Scholar
  131. 131.
    Wu TT, Hsieh YH, Wu CC, Hsieh YS, Huang CY, Liu JY. Overexpression of protein kinase C alpha mRNA in human hepatocellular carcinoma: a potential marker of disease prognosis. Clin Chim Acta. 2007;382:54–58.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Giulia Malaguarnera
    • 1
  • Maria Giordano
    • 2
  • Isabella Paladina
    • 2
  • Massimiliano Berretta
    • 2
    • 3
  • Alessandro Cappellani
    • 4
  • Mariano Malaguarnera
    • 2
  1. 1.Department of Biomedical ScienceUniversity of CataniaCataniaItaly
  2. 2.Senescence, Urological, and Neurological SciencesUniversity of Catania95126CataniaItaly
  3. 3.Department of Medical OncologyNational Cancer InstituteAviano (PN)Italy
  4. 4.Section of General Surgery and Oncology, Department of General SurgeryUniversity Medical School of CataniaCataniaItaly

Personalised recommendations