Digestive Diseases and Sciences

, Volume 55, Issue 10, pp 2712–2726 | Cite as

Emerging Opportunities for Site-Specific Molecular and Cellular Interventions in Autoimmune Hepatitis

Review

Abstract

Current corticosteroid-based treatments of autoimmune hepatitis frequently have incomplete or unsatisfactory outcomes, side effects, and excessive immune suppression. The goal of this review is to describe the advances in developing animal models of autoimmune hepatitis and in treating diverse immune-mediated diseases that make pursuit of site-specific molecular and cellular inventions in autoimmune hepatitis feasible. Prime source and review articles in English were selected by a Medline search through October 2009. A murine model infected with an adenovirus expressing human CYP2D6 is a resource for evaluating new therapies because of its histological and serological features, persistence, and progressive hepatic fibrosis. Synthetic analog peptides that block autoantigen expression, a dimeric recombinant human fusion protein of cytotoxic T lymphocyte antigen-4, monoclonal antibodies against tumor necrosis factor-alpha, recombinant interleukin 10, tolerization techniques for disease-triggering autoantigens, T regulatory cell transfer, vaccination against antigen-specific cytotoxic CD8+ T cells, and gene silencing methods using small inhibitory RNAs are feasible interventions to explore. Treatments directed at dampening immunocyte activation with soluble cytotoxic T lymphocyte antigen-4, inhibiting immunocyte differentiation with recombinant interleukin 10, and improving immunosuppressive activity with regulatory T cell modulation have the most immediate promise. Progress in the development of an animal model of autoimmune hepatitis and experiences in other immune-mediated diseases justify the evaluation of site-specific molecular and cellular interventions in this disease.

Keywords

Autoimmune hepatitis Molecular interventions Targeted therapy 

References

  1. 1.
    Cook GC, Mulligan R, Sherlock S. Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. Q J Med. 1971;40:159–185.PubMedGoogle Scholar
  2. 2.
    Soloway RD, Summerskill WH, Baggenstoss AH, et al. Clinical, biochemical, and histological remission of severe chronic active liver disease: a controlled study of treatments and early prognosis. Gastroenterology. 1972;63:820–833.PubMedGoogle Scholar
  3. 3.
    Murray-Lyon IM, Stern RB, Williams R. Controlled trial of prednisone and azathioprine in active chronic hepatitis. Lancet. 1973;1:735–737.PubMedCrossRefGoogle Scholar
  4. 4.
    Summerskill WH, Korman MG, Ammon HV, Baggenstoss AH. Prednisone for chronic active liver disease: dose titration, standard dose, and combination with azathioprine compared. Gut. 1975;16:876–883.PubMedCrossRefGoogle Scholar
  5. 5.
    Kirk AP, Jain S, Pocock S, Thomas HC, Sherlock S. Late results of the Royal Free Hospital prospective controlled trial of prednisolone therapy in hepatitis B surface antigen negative chronic active hepatitis. Gut. 1980;21:78–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Roberts SK, Therneau TM, Czaja AJ. Prognosis of histological cirrhosis in type 1 autoimmune hepatitis. Gastroenterology. 1996;110:848–857.PubMedCrossRefGoogle Scholar
  7. 7.
    Floreani A, Niro G, Rosa Rizzotto E, et al. Type I autoimmune hepatitis: clinical course and outcome in an Italian multicentre study. Aliment Pharmacol Ther. 2006;24:1051–1057.PubMedCrossRefGoogle Scholar
  8. 8.
    Seo S, Toutounjian R, Conrad A, Blatt L, Tong MJ. Favorable outcomes of autoimmune hepatitis in a community clinic setting. J Gastroenterol Hepatol. 2008;23:1410–1414.PubMedCrossRefGoogle Scholar
  9. 9.
    Schvarcz R, Glaumann H, Weiland O. Survival and histological resolution of fibrosis in patients with autoimmune chronic active hepatitis. J Hepatol. 1993;18:15–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med. 1997;127:981–985.PubMedGoogle Scholar
  11. 11.
    Cotler SJ, Jakate S, Jensen DM. Resolution of cirrhosis in autoimmune hepatitis with corticosteroid therapy. J Clin Gastroenterol. 2001;32:428–430.PubMedCrossRefGoogle Scholar
  12. 12.
    Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol. 2004;40:646–652.PubMedCrossRefGoogle Scholar
  13. 13.
    Mohamadnejad M, Malekzadeh R, Nasseri-Moghaddam S, et al. Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis. Dig Dis Sci. 2005;50:547–551.PubMedCrossRefGoogle Scholar
  14. 14.
    Czaja AJ, Wolf AM, Summerskill WH. Development and early prognosis of esophageal varices in severe chronic active liver disease (CALD) treated with prednisone. Gastroenterology. 1979;77:629–633.PubMedGoogle Scholar
  15. 15.
    Czaja AJ. Rapidity of treatment response and outcome in type 1 autoimmune hepatitis. J Hepatol. 2009;51:161–167.PubMedCrossRefGoogle Scholar
  16. 16.
    Czaja AJ, Freese DK. Practice guidelines of the American Association for the Study of Liver Diseases. Diagnosis and treatment of autoimmune hepatitis. Hepatology. 2002;36:479–497.PubMedCrossRefGoogle Scholar
  17. 17.
    Czaja AJ. Current and future treatments of autoimmune hepatitis. Expert Rev Gastroenterol Hepatol. 2009;3:269–291.PubMedCrossRefGoogle Scholar
  18. 18.
    Czaja AJ, Beaver SJ, Shiels MT. Sustained remission after corticosteroid therapy of severe hepatitis B surface antigen-negative chronic active hepatitis. Gastroenterology. 1987;92:215–219.PubMedGoogle Scholar
  19. 19.
    Czaja AJ. Safety issues in the management of autoimmune hepatitis. Expert Opin Drug Saf. 2008;7:319–333.PubMedCrossRefGoogle Scholar
  20. 20.
    Montano-Loza AJ, Carpenter HA, Czaja AJ. Features associated with treatment failure in type 1 autoimmune hepatitis and predictive value of the model of end-stage liver disease. Hepatology. 2007;46:1138–1145.PubMedCrossRefGoogle Scholar
  21. 21.
    Czaja AJ, Davis GL, Ludwig J, Taswell HF. Complete resolution of inflammatory activity following corticosteroid treatment of HBsAg-negative chronic active hepatitis. Hepatology. 1984;4:622–627.PubMedCrossRefGoogle Scholar
  22. 22.
    Czaja AJ, Ammon HV, Summerskill WH. Clinical features and prognosis of severe chronic active liver disease (CALD) after corticosteroid-induced remission. Gastroenterology. 1980;78:518–523.PubMedGoogle Scholar
  23. 23.
    Czaja AJ, Ludwig J, Baggenstoss AH, Wolf A. Corticosteroid-treated chronic active hepatitis in remission: uncertain prognosis of chronic persistent hepatitis. N Engl J Med. 1981;304:5–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Hegarty JE, Nouri Aria KT, Portmann B, Eddleston AL, Williams R. Relapse following treatment withdrawal in patients with autoimmune chronic active hepatitis. Hepatology. 1983;3:685–689.PubMedCrossRefGoogle Scholar
  25. 25.
    Czaja AJ, Menon KV, Carpenter HA. Sustained remission after corticosteroid therapy for type 1 autoimmune hepatitis: a retrospective analysis. Hepatology. 2002;35:890–897.PubMedCrossRefGoogle Scholar
  26. 26.
    Czaja AJ, Carpenter HA. Histological features associated with relapse after corticosteroid withdrawal in type 1 autoimmune hepatitis. Liver Int. 2003;23:116–123.PubMedCrossRefGoogle Scholar
  27. 27.
    Manns MP, Vogel A. Autoimmune hepatitis, from mechanisms to therapy. Hepatology. 2006;43:S132–S144.PubMedCrossRefGoogle Scholar
  28. 28.
    Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol. 2007;1:113–128.PubMedCrossRefGoogle Scholar
  29. 29.
    Vergani D, Mieli-Vergani G. Aetiopathogenesis of autoimmune hepatitis. World J Gastroenterol. 2008;14:3306–3312.PubMedCrossRefGoogle Scholar
  30. 30.
    Vierling JM, Flores PA. Evolving new therapies of autoimmune hepatitis. Clin Liver Dis. 2002;6:825–850. ix.PubMedCrossRefGoogle Scholar
  31. 31.
    Schalm SW, Summerskill WH, Go VL. Prednisone for chronic active liver disease: pharmacokinetics, including conversion to prednisolone. Gastroenterology. 1977;72:910–913.PubMedGoogle Scholar
  32. 32.
    Uribe M, Summerskill WH, Go VL. Comparative serum prednisone and prednisolone concentrations following administration to patients with chronic active liver disease. Clin Pharmacokinet. 1982;7:452–459.PubMedCrossRefGoogle Scholar
  33. 33.
    Uribe M, Go VL, Kluge D. Prednisone for chronic active hepatitis: pharmacokinetics and serum binding in patients with chronic active hepatitis and steroid major side effects. J Clin Gastroenterol. 1984;6:331–335.PubMedGoogle Scholar
  34. 34.
    Brattsand R, Linden M. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies. Aliment Pharmacol Ther. 1996;10(Suppl 2):81–90. discussion 91-82.PubMedGoogle Scholar
  35. 35.
    De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol. 2000;109:16–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Almawi WY. Molecular mechanisms of glucocorticoid effects. Mod Asp Immunobiol. 2001;2:78–82.Google Scholar
  37. 37.
    Chan GL, Erdmann GR, Gruber SA, Matas AJ, Canafax DM. Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J Clin Pharmacol. 1990;30:358–363.PubMedGoogle Scholar
  38. 38.
    Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol. 1992;43:329–339.PubMedCrossRefGoogle Scholar
  39. 39.
    Sandborn WJ. A review of immune modifier therapy for inflammatory bowel disease: azathioprine, 6-mercaptopurine, cyclosporine, and methotrexate. Am J Gastroenterol. 1996;91:423–433.PubMedGoogle Scholar
  40. 40.
    Weinshilboum R. Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos. 2001;29:601–605.PubMedGoogle Scholar
  41. 41.
    Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–1145.PubMedGoogle Scholar
  42. 42.
    Atreya I, Neurath MF. Azathioprine in inflammatory bowel disease: improved molecular insights and resulting clinical implications. Expert Rev Gastroenterol Hepatol. 2008;2:23–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Thomas CW, Myhre GM, Tschumper R, et al. Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J Pharmacol Exp Ther. 2005;312:537–545.PubMedCrossRefGoogle Scholar
  44. 44.
    Heneghan MA, McFarlane IG. Current and novel immunosuppressive therapy for autoimmune hepatitis. Hepatology. 2002;35:7–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Wolfraim LA. Treating autoimmune diseases through restoration of antigen-specific immune tolerance. Arch Immunol Ther Exp (Warsz). 2006;54:1–13.CrossRefGoogle Scholar
  46. 46.
    Myers LK, Rosloniec EF, Seyer JM, Stuart JM, Kang AH. A synthetic peptide analogue of a determinant of type II collagen prevents the onset of collagen-induced arthritis. J Immunol. 1993;150:4652–4658.PubMedGoogle Scholar
  47. 47.
    Fridkis-Hareli M, Rosloniec EF, Fugger L, Strominger JL. Synthetic amino acid copolymers that bind to HLA-DR proteins and inhibit type II collagen-reactive T cell clones. Proc Natl Acad Sci U S A. 1998;95:12528–12531.PubMedCrossRefGoogle Scholar
  48. 48.
    Myers LK, Tang B, Rosloniec EF, et al. Characterization of a peptide analog of a determinant of type II collagen that suppresses collagen-induced arthritis. J Immunol. 1998;161:3589–3595.PubMedGoogle Scholar
  49. 49.
    Hanson GJ. DR (MHC class II) ligands: an approach to rheumatoid arthritis therapeutics. Curr Pharm Des. 1998;4:397–402.PubMedGoogle Scholar
  50. 50.
    Fridkis-Hareli M, Rosloniec EF, Fugger L, Strominger JL. Synthetic peptides that inhibit binding of the collagen type II 261–273 epitope to rheumatoid arthritis-associated HLA-DR1 and -DR4 molecules and collagen-specific T-cell responses. Hum Immunol. 2000;61:640–650.PubMedCrossRefGoogle Scholar
  51. 51.
    Guinan EC, Boussiotis VA, Neuberg D, et al. Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med. 1999;340:1704–1714.PubMedCrossRefGoogle Scholar
  52. 52.
    Fiocco U, Sfriso P, Oliviero F, et al. Co-stimulatory modulation in rheumatoid arthritis: the role of (CTLA4-Ig) abatacept. Autoimmun Rev. 2008;8:76–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Korhonen R, Moilanen E. Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Basic Clin Pharmacol Toxicol. 2009;104:276–284.PubMedCrossRefGoogle Scholar
  54. 54.
    Maxwell L, Singh JA. Abatacept for rheumatoid arthritis. Cochrane Database Syst Rev. 2009;CD007277.Google Scholar
  55. 55.
    Bach MA, Bach JF. The use of monoclonal anti-T cell antibodies to study T cell imbalances in human diseases. Clin Exp Immunol. 1981;45:449–456.PubMedGoogle Scholar
  56. 56.
    Rutgeerts P, D’Haens G, Targan S, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology. 1999;117:761–769.PubMedCrossRefGoogle Scholar
  57. 57.
    Naveau S, Chollet-Martin S, Dharancy S, et al. A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology. 2004;39:1390–1397.PubMedCrossRefGoogle Scholar
  58. 58.
    Schreiber S, Fedorak RN, Nielsen OH, et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology. 2000;119:1461–1472.PubMedCrossRefGoogle Scholar
  59. 59.
    Nelson DR, Lauwers GY, Lau JY, Davis GL. Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology. 2000;118:655–660.PubMedCrossRefGoogle Scholar
  60. 60.
    Santos ES, Arosemena LR, Raez LE, O’Brien C, Regev A. Successful treatment of autoimmune hepatitis and idiopathic thrombocytopenic purpura with the monoclonal antibody, rituximab: case report and review of literature. Liver Int. 2006;26:625–629.PubMedCrossRefGoogle Scholar
  61. 61.
    Lohse AW, Dienes HP, Meyer zum Buschenfelde KH. Suppression of murine experimental autoimmune hepatitis by T-cell vaccination or immunosuppression. Hepatology. 1998;27:1536–1543.PubMedCrossRefGoogle Scholar
  62. 62.
    Guan Q, Ma Y, Hillman CL, et al. Development of recombinant vaccines against IL-12/IL-23 p40 and in vivo evaluation of their effects in the downregulation of intestinal inflammation in murine colitis. Vaccine. 2009.Google Scholar
  63. 63.
    Wardrop RM III, Whitacre CC. Oral tolerance in the treatment of inflammatory autoimmune diseases. Inflamm Res. 1999;48:106–119.PubMedCrossRefGoogle Scholar
  64. 64.
    Nagler A, Pines M, Abadi U, et al. Oral tolerization ameliorates liver disorders associated with chronic graft versus host disease in mice. Hepatology. 2000;31:641–648.PubMedCrossRefGoogle Scholar
  65. 65.
    McCafferty AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21:639–644.CrossRefGoogle Scholar
  66. 66.
    Hannon GJ. RNA interference. Nature. 2002;418:244–251.PubMedCrossRefGoogle Scholar
  67. 67.
    Davidson BL. Hepatic diseases–hitting the target with inhibitory RNAs. N Engl J Med. 2003;349:2357–2359.PubMedCrossRefGoogle Scholar
  68. 68.
    Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature. 2004;431:371–378.PubMedCrossRefGoogle Scholar
  69. 69.
    Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9:347–351.PubMedCrossRefGoogle Scholar
  70. 70.
    Howell CD. Animal models of autoimmunity. Clin Liver Dis. 2002;6:775–783.PubMedCrossRefGoogle Scholar
  71. 71.
    Christen U, Holdener M, Hintermann E. Animal models for autoimmune hepatitis. Autoimmun Rev. 2007;6:306–311.PubMedCrossRefGoogle Scholar
  72. 72.
    Jaeckel E. Animal models of autoimmune hepatitis. Semin Liver Dis. 2002;22:325–338.PubMedCrossRefGoogle Scholar
  73. 73.
    Peters MG. Animal models of autoimmune liver disease. Immunol Cell Biol. 2002;80:113–116.PubMedCrossRefGoogle Scholar
  74. 74.
    Alvarez F, Bernard O, Homberg JC, Kreibich G. Anti-liver-kidney microsome antibody recognizes a 50, 000 molecular weight protein of the endoplasmic reticulum. J Exp Med. 1985;161:1231–1236.PubMedCrossRefGoogle Scholar
  75. 75.
    Gueguen M, Meunier-Rotival M, Bernard O, Alvarez F. Anti-liver kidney microsome antibody recognizes a cytochrome P450 from the IID subfamily. J Exp Med. 1988;168:801–806.PubMedCrossRefGoogle Scholar
  76. 76.
    Manns MP, Johnson EF, Griffin KJ, Tan EM, Sullivan KF. Major antigen of liver kidney microsomal autoantibodies in idiopathic autoimmune hepatitis is cytochrome P450db1. J Clin Invest. 1989;83:1066–1072.PubMedCrossRefGoogle Scholar
  77. 77.
    Obermayer-Straub P, Manns MP. Cytochrome P450 enzymes and UDP-glucuronosyltransferases as hepatocellular autoantigens. Mol Biol Rep. 1996;23:235–242.PubMedCrossRefGoogle Scholar
  78. 78.
    Dalekos GN, Zachou K, Liaskos C, Gatselis N. Autoantibodies and defined target autoantigens in autoimmune hepatitis: an overview. Eur J Intern Med. 2002;13:293–303.PubMedCrossRefGoogle Scholar
  79. 79.
    Bianchi FB, Muratori P, Muratori L. New autoantibodies and autoantigens in autoimmune hepatitis. Clin Liver Dis. 2002;6:785–797.PubMedCrossRefGoogle Scholar
  80. 80.
    Strassburg CP, Manns MP. Autoantibodies and autoantigens in autoimmune hepatitis. Semin Liver Dis. 2002;22:339–352.PubMedCrossRefGoogle Scholar
  81. 81.
    Bogdanos DP, Dalekos GN. Enzymes as target antigens of liver-specific autoimmunity: the case of cytochromes P450s. Curr Med Chem. 2008;15:2285–2292.PubMedCrossRefGoogle Scholar
  82. 82.
    Tahiri F, Le Naour F, Huguet S, et al. Identification of plasma membrane autoantigens in autoimmune hepatitis type 1 using a proteomics tool. Hepatology. 2008;47:937–948.PubMedCrossRefGoogle Scholar
  83. 83.
    Song Q, Liu G, Hu S, et al. Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. J Proteome Res. 2009.Google Scholar
  84. 84.
    Djilali-Saiah I, Lapierre P, Vittozi S, Alvarez F. DNA vaccination breaks tolerance for a neo-self antigen in liver: a transgenic murine model of autoimmune hepatitis. J Immunol. 2002;169:4889–4896.PubMedGoogle Scholar
  85. 85.
    Lapierre P, Djilali-Saiah I, Vitozzi S, Alvarez F. A murine model of type 2 autoimmune hepatitis: Xenoimmunization with human antigens. Hepatology. 2004;39:1066–1074.PubMedCrossRefGoogle Scholar
  86. 86.
    Lapierre P, Beland K, Djilali-Saiah I, Alvarez F. Type 2 autoimmune hepatitis murine model: the influence of genetic background in disease development. J Autoimmun. 2006;26:82–89.PubMedCrossRefGoogle Scholar
  87. 87.
    Holdener M, Hintermann E, Bayer M, et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med. 2008;205:1409–1422.PubMedCrossRefGoogle Scholar
  88. 88.
    Czaja AJ, Donaldson PT. Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis. Immunol Rev. 2000;174:250–259.PubMedCrossRefGoogle Scholar
  89. 89.
    Czaja AJ, Doherty DG, Donaldson PT. Genetic bases of autoimmune hepatitis. Dig Dis Sci. 2002;47:2139–2150.PubMedCrossRefGoogle Scholar
  90. 90.
    Brown JH, Jardetzky T, Saper MA, et al. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature. 1988;332:845–850.PubMedCrossRefGoogle Scholar
  91. 91.
    Doherty DG, Penzotti JE, Koelle DM, et al. Structural basis of specificity and degeneracy of T cell recognition: pluriallelic restriction of T cell responses to a peptide antigen involves both specific and promiscuous interactions between the T cell receptor, peptide, and HLA-DR. J Immunol. 1998;161:3527–3535.PubMedGoogle Scholar
  92. 92.
    Corper AL, Stratmann T, Apostolopoulos V, et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science. 2000;288:505–511.PubMedCrossRefGoogle Scholar
  93. 93.
    Penzotti JE, Doherty D, Lybrand TP, Nepom GT. A structural model for TCR recognition of the HLA class II shared epitope sequence implicated in susceptibility to rheumatoid arthritis. J Autoimmun. 1996;9:287–293.PubMedCrossRefGoogle Scholar
  94. 94.
    Garboczi DN, Ghosh P, Utz U, et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature. 1996;384:134–141.PubMedCrossRefGoogle Scholar
  95. 95.
    Friede T, Gnau V, Jung G, et al. Natural ligand motifs of closely related HLA-DR4 molecules predict features of rheumatoid arthritis associated peptides. Biochim Biophys Acta. 1996;1316:85–101.PubMedGoogle Scholar
  96. 96.
    Volz T, Schwarz G, Fleckenstein B, et al. Determination of the peptide binding motif and high-affinity ligands for HLA-DQ4 using synthetic peptide libraries. Hum Immunol. 2004;65:594–601.PubMedCrossRefGoogle Scholar
  97. 97.
    Weyand CM, Hicok KC, Goronzy JJ. Nonrandom selection of T cell specificities in anti-HLA-DR responses. Sequence motifs of the responder HLA-DR allele influence T cell recruitment. J Immunol. 1991;147:70–78.PubMedGoogle Scholar
  98. 98.
    Strettell MD, Donaldson PT, Thomson LJ, et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–2035.PubMedCrossRefGoogle Scholar
  99. 99.
    Doherty DG, Donaldson PT, Underhill JA, et al. Allelic sequence variation in the HLA class II genes and proteins in patients with autoimmune hepatitis. Hepatology. 1994;19:609–615.PubMedCrossRefGoogle Scholar
  100. 100.
    Sakurai Y, Brand DD, Tang B, et al. Analog peptides of type II collagen can suppress arthritis in HLA-DR4 (DRB1*0401) transgenic mice. Arthritis Res Ther. 2006;8:R150.PubMedCrossRefGoogle Scholar
  101. 101.
    Myers LK, Tang B, Rosioniec EF, Stuart JM, Kang AH. An altered peptide ligand of type II collagen suppresses autoimmune arthritis. Crit Rev Immunol. 2007;27:345–356.PubMedGoogle Scholar
  102. 102.
    Myers LK, Sakurai Y, Tang B, et al. Peptide-induced suppression of collagen-induced arthritis in HLA-DR1 transgenic mice. Arthritis Rheum. 2002;46:3369–3377.PubMedCrossRefGoogle Scholar
  103. 103.
    Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol. 2008;6:379–388.PubMedCrossRefGoogle Scholar
  104. 104.
    Chambers CA, Allison JP. Co-stimulation in T cell responses. Curr Opin Immunol. 1997;9:396–404.PubMedCrossRefGoogle Scholar
  105. 105.
    Chambers CA. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol. 2001;22:217–223.PubMedCrossRefGoogle Scholar
  106. 106.
    Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7–2 complex. Nature. 2001;410:604–608.PubMedCrossRefGoogle Scholar
  107. 107.
    Viglietta V, Khoury SJ. Modulating co-stimulation. Neurotherapeutics. 2007;4:666–675.PubMedCrossRefGoogle Scholar
  108. 108.
    Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev. 2009;229:307–321.PubMedCrossRefGoogle Scholar
  109. 109.
    Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992;71:1065–1068.PubMedCrossRefGoogle Scholar
  110. 110.
    Schwartz RS. The new immunology–the end of immunosuppressive drug therapy? N Engl J Med. 1999;340:1754–1756.PubMedCrossRefGoogle Scholar
  111. 111.
    Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev. 2008;223:143–155.PubMedCrossRefGoogle Scholar
  112. 112.
    Weyand CM, Goronzy JJ. T-cell-targeted therapies in rheumatoid arthritis. Nat Clin Pract Rheumatol. 2006;2:201–210.PubMedCrossRefGoogle Scholar
  113. 113.
    Ben-Shoshan M. CTLA-4Ig: uses and future directions. Recent Pat Inflamm Allergy Drug Discov. 2009;3:132–142.PubMedCrossRefGoogle Scholar
  114. 114.
    Kuemmerle-Deschner JB, Benseler S. Abatacept in difficult-to-treat juvenile idiopathic arthritis. Biologics. 2008;2:865–874.PubMedGoogle Scholar
  115. 115.
    Viglietta V, Bourcier K, Buckle GJ, et al. CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology. 2008;71:917–924.PubMedCrossRefGoogle Scholar
  116. 116.
    de Jong YP, Rietdijk ST, Faubion WA, et al. Blocking inducible co-stimulator in the absence of CD28 impairs Th1 and CD25+ regulatory T cells in murine colitis. Int Immunol. 2004;16:205–213.PubMedCrossRefGoogle Scholar
  117. 117.
    Langer LF, Clay TM, Morse MA. Update on anti-CTLA-4 antibodies in clinical trials. Expert Opin Biol Ther. 2007;7:1245–1256.PubMedCrossRefGoogle Scholar
  118. 118.
    Kallinich T, Beier KC, Gelfand EW, Kroczek RA, Hamelmann E. Co-stimulatory molecules as potential targets for therapeutic intervention in allergic airway disease. Clin Exp Allergy. 2005;35:1521–1534.PubMedCrossRefGoogle Scholar
  119. 119.
    Vermeiren J, Ceuppens JL, Haegel-Kronenberger H, et al. Blocking B7 and CD40 co-stimulatory molecules decreases antiviral T cell activity. Clin Exp Immunol. 2004;135:253–258.PubMedCrossRefGoogle Scholar
  120. 120.
    Pham T, Claudepierre P, Constantin A, et al. Abatacept therapy and safety management. Joint Bone Spine. 2009;76(Suppl 1):S3–S55.PubMedCrossRefGoogle Scholar
  121. 121.
    Liblau RS, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995;16:34–38.PubMedCrossRefGoogle Scholar
  122. 122.
    Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev. 1996;9:532–562.PubMedGoogle Scholar
  123. 123.
    Czaja AJ. Understanding the pathogenesis of autoimmune hepatitis. Am J Gastroenterol. 2001;96:1224–1231.PubMedCrossRefGoogle Scholar
  124. 124.
    Hopf U, Meyer zum Buschenfelde KH, Arnold W. Detection of a liver-membrane autoantibody in HBsAg-negative chronic active hepatitis. N Engl J Med. 1976;294:578–582.PubMedCrossRefGoogle Scholar
  125. 125.
    Gonzales C, Cochrane AM, Eddleston AL, Williams R. Mechanisms responsible for antibody-dependent, cell-mediated cytotoxicity to isolated hepatocytes in chronic active hepatitis. Gut. 1979;20:385–388.PubMedCrossRefGoogle Scholar
  126. 126.
    Nouri-Aria KT, Hegarty JE, Alexander GJ, Eddleston AL, Williams R. IgG production in ‘autoimmune’ chronic active hepatitis. Effect of prednisolone on T and B lymphocyte function. Clin Exp Immunol. 1985;61:290–296.PubMedGoogle Scholar
  127. 127.
    Vergani D, Mieli-Vergani G, Mondelli M, Portmann B, Eddleston AL. Immunoglobulin on the surface of isolated hepatocytes is associated with antibody-dependent cell-mediated cytotoxicity and liver damage. Liver. 1987;7:307–315.PubMedGoogle Scholar
  128. 128.
    Czaja AJ. Autoimmune hepatitis. Evolving concepts and treatment strategies. Dig Dis Sci. 1995;40:435–456.PubMedCrossRefGoogle Scholar
  129. 129.
    McFarlane IG. Pathogenesis of autoimmune hepatitis. Biomed Pharmacother. 1999;53:255–263.PubMedCrossRefGoogle Scholar
  130. 130.
    Czaja AJ, Sievers C, Zein NN. Nature and behavior of serum cytokines in type 1 autoimmune hepatitis. Dig Dis Sci. 2000;45:1028–1035.PubMedCrossRefGoogle Scholar
  131. 131.
    Vergani D, Choudhuri K, Bogdanos DP, Mieli-Vergani G. Pathogenesis of autoimmune hepatitis. Clin Liver Dis. 2002;6:727–737.PubMedCrossRefGoogle Scholar
  132. 132.
    Peters M. Actions of cytokines on the immune response and viral interactions: an overview. Hepatology. 1996;23:909–916.PubMedCrossRefGoogle Scholar
  133. 133.
    Tilg H, Kaser A, Moschen AR. How to modulate inflammatory cytokines in liver diseases. Liver Int. 2006;26:1029–1039.PubMedCrossRefGoogle Scholar
  134. 134.
    Cookson S, Constantini PK, Clare M, et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology. 1999;30:851–856.PubMedCrossRefGoogle Scholar
  135. 135.
    Czaja AJ, Cookson S, Constantini PK, et al. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology. 1999;117:645–652.PubMedCrossRefGoogle Scholar
  136. 136.
    Bittencourt PL, Palacios SA, Cancado EL, et al. Autoimmune hepatitis in Brazilian patients is not linked to tumor necrosis factor alpha polymorphisms at position -308. J Hepatol. 2001;35:24–28.PubMedCrossRefGoogle Scholar
  137. 137.
    Tsikrikoni A, Kyriakou DS, Rigopoulou EI, et al. Markers of cell activation and apoptosis in bone marrow mononuclear cells of patients with autoimmune hepatitis type 1 and primary biliary cirrhosis. J Hepatol. 2005;42:393–399.PubMedCrossRefGoogle Scholar
  138. 138.
    Atzeni F, Sarzi-Puttini P, Doria A, Iaccarino L, Capsoni F. Potential off-label use of infliximab in autoimmune and non-autoimmune diseases: a review. Autoimmun Rev. 2005;4:144–152.PubMedCrossRefGoogle Scholar
  139. 139.
    Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol. 1993;11:165–190.PubMedCrossRefGoogle Scholar
  140. 140.
    Katsikis PD, Chu CQ, Brennan FM, Maini RN, Feldmann M. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J Exp Med. 1994;179:1517–1527.PubMedCrossRefGoogle Scholar
  141. 141.
    Taylor PC, Feldmann M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:578–582.PubMedCrossRefGoogle Scholar
  142. 142.
    Singh JA, Christensen R, Wells GA, et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2009;CD007848.Google Scholar
  143. 143.
    Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–350.PubMedCrossRefGoogle Scholar
  144. 144.
    Tilg H, Jalan R, Kaser A, et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J Hepatol. 2003;38:419–425.PubMedCrossRefGoogle Scholar
  145. 145.
    Boetticher NC, Peine CJ, Kwo P, et al. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology. 2008;135:1953–1960.PubMedCrossRefGoogle Scholar
  146. 146.
    Schramm C, Schneider A, Marx A, Lohse AW. Adalimumab could suppress the activity of non alcoholic steatohepatitis (NASH). Z Gastroenterol. 2008;46:1369–1371.PubMedCrossRefGoogle Scholar
  147. 147.
    Ozorio G, McGarity B, Bak H, et al. Autoimmune hepatitis following infliximab therapy for ankylosing spondylitis. Med J Aust. 2007;187:524–526.PubMedGoogle Scholar
  148. 148.
    Tobon GJ, Canas C, Jaller JJ, Restrepo JC, Anaya JM. Serious liver disease induced by infliximab. Clin Rheumatol. 2007;26:578–581.PubMedCrossRefGoogle Scholar
  149. 149.
    Marques M, Magro F, Cardoso H, et al. Infliximab-induced lupus-like syndrome associated with autoimmune hepatitis. Inflamm Bowel Dis. 2008;14:723–725.PubMedCrossRefGoogle Scholar
  150. 150.
    Ramos-Casals M, Brito-Zeron P, Soto MJ, Cuadrado MJ, Khamashta MA. Autoimmune diseases induced by TNF-targeted therapies. Best Pract Res Clin Rheumatol. 2008;22:847–861.PubMedCrossRefGoogle Scholar
  151. 151.
    Fairhurst DA, Sheehan-Dare R. Autoimmune hepatitis associated with infliximab in a patient with palmoplantar pustular psoriaisis. Clin Exp Dermatol. 2009;34:421–422.PubMedCrossRefGoogle Scholar
  152. 152.
    Licastro F, Chiappelli M, Ianni M, Porcellini E. Tumor necrosis factor-alpha antagonists: differential clinical effects by different biotechnological molecules. Int J Immunopathol Pharmacol. 2009;22:567–572.PubMedGoogle Scholar
  153. 153.
    Carlsen KM, Riis L, Madsen OR. Toxic hepatitis induced by infliximab in a patient with rheumatoid arthritis with no relapse after switching to etanercept. Clin Rheumatol. 2009;28:1001–1003.PubMedCrossRefGoogle Scholar
  154. 154.
    Fuchs AC, Granowitz EV, Shapiro L, et al. Clinical, hematologic, and immunologic effects of interleukin-10 in humans. J Clin Immunol. 1996;16:291–303.PubMedCrossRefGoogle Scholar
  155. 155.
    Huhn RD, Radwanski E, O’Connell SM, et al. Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin-10 in healthy volunteers. Blood. 1996;87:699–705.PubMedGoogle Scholar
  156. 156.
    Huhn RD, Radwanski E, Gallo J, et al. Pharmacodynamics of subcutaneous recombinant human interleukin-10 in healthy volunteers. Clin Pharmacol Ther. 1997;62:171–180.PubMedCrossRefGoogle Scholar
  157. 157.
    Rosenblum IY, Dayan AD. Carcinogenicity testing of IL-10: principles and practicalities. Hum Exp Toxicol. 2002;21:347–358.PubMedCrossRefGoogle Scholar
  158. 158.
    Rosenblum IY, Johnson RC, Schmahai TJ. Preclinical safety evaluation of recombinant human interleukin-10. Regul Toxicol Pharmacol. 2002;35:56–71.PubMedCrossRefGoogle Scholar
  159. 159.
    Skapenko A, Niedobitek GU, Kalden JR, Lipsky PE, Schulze-Koops H. Generation and regulation of human Th1-biased immune responses in vivo: a critical role for IL-4 and IL-10. J Immunol. 2004;172:6427–6434.PubMedGoogle Scholar
  160. 160.
    Drazan KE, Wu L, Bullington D, Shaked A. Viral IL-10 gene therapy inhibits TNF-alpha and IL-1 beta, not IL-6, in the newborn endotoxemic mouse. J Pediatr Surg. 1996;31:411–414.PubMedCrossRefGoogle Scholar
  161. 161.
    Thompson K, Maltby J, Fallowfield J, et al. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology. 1998;28:1597–1606.PubMedCrossRefGoogle Scholar
  162. 162.
    Herfarth HH, Mohanty SP, Rath HC, Tonkonogy S, Sartor RB. Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers. Gut. 1996;39:836–845.PubMedCrossRefGoogle Scholar
  163. 163.
    McHutchison JG, Giannelli G, Nyberg L, et al. A pilot study of daily subcutaneous interleukin-10 in patients with chronic hepatitis C infection. J Interferon Cytokine Res. 1999;19:1265–1270.PubMedCrossRefGoogle Scholar
  164. 164.
    Nelson DR, Tu Z, Soldevila-Pico C, et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology. 2003;38:859–868.PubMedGoogle Scholar
  165. 165.
    Fedorak RN, Gangl A, Elson CO, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology. 2000;119:1473–1482.PubMedCrossRefGoogle Scholar
  166. 166.
    Rachmawati H, Beljaars L, Reker-Smit C, et al. Pharmacokinetic and biodistribution profile of recombinant human interleukin-10 following intravenous administration in rats with extensive liver fibrosis. Pharm Res. 2004;21:2072–2078.PubMedCrossRefGoogle Scholar
  167. 167.
    Evans JT, Shepard MM, Oates JC, Self SE, Reuben A. Rituximab-responsive cryoglobulinemic glomerulonephritis in a patient with autoimmune hepatitis. J Clin Gastroenterol. 2008;42:862–863.PubMedCrossRefGoogle Scholar
  168. 168.
    Ram R, Ben-Bassat I, Shpilberg O, Polliack A, Raanani P. The late adverse events of rituximab therapy–rare but there!. Leuk Lymphoma. 2009;50:1083–1095.PubMedCrossRefGoogle Scholar
  169. 169.
    Ilan Y. Oral tolerance: can we make it work? Hum Immunol. 2009;70:768–776.PubMedCrossRefGoogle Scholar
  170. 170.
    Mizrahi M, Ilan Y. The gut mucosa as a site for induction of regulatory T-cells. Curr Pharm Des. 2009;15:1191–1202.PubMedCrossRefGoogle Scholar
  171. 171.
    Mowat AM. Basic mechanisms and clinical implications of oral tolerance. Curr Opin Gastroenterol. 1999;15:546–556.PubMedCrossRefGoogle Scholar
  172. 172.
    Faria AM, Weiner HL. Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol. 2006;13:143–157.PubMedCrossRefGoogle Scholar
  173. 173.
    Navarro MJ, Higgins GC, Lohr KM, Myers LK. Amelioration of relapsing polychondritis in a child treated with oral collagen. Am J Med Sci. 2002;324:101–103.PubMedCrossRefGoogle Scholar
  174. 174.
    Cai Q, Du X, Zhou B, et al. Induction of tolerance by oral administration of beta-tubulin in an animal model of autoimmune inner ear disease. ORL J Otorhinolaryngol Relat Spec. 2009;71:135–141.PubMedGoogle Scholar
  175. 175.
    Gonnella PA, Del Nido PJ, McGowan FX. Oral tolerization with cardiac myosin peptide (614–629) ameliorates experimental autoimmune myocarditis: role of STAT 6 genes in BALB/CJ mice. J Clin Immunol. 2009;29:434–443.PubMedCrossRefGoogle Scholar
  176. 176.
    Bresson D, Togher L, Rodrigo E, et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest. 2006;116:1371–1381.PubMedCrossRefGoogle Scholar
  177. 177.
    Broere F, Wieten L, Klein Koerkamp EI, et al. Oral or nasal antigen induces regulatory T cells that suppress arthritis and proliferation of arthritogenic T cells in joint draining lymph nodes. J Immunol. 2008;181:899–906.PubMedGoogle Scholar
  178. 178.
    Gumanovskaya ML, Myers LK, Rosloniec EF, Stuart JM, Kang AH. Intravenous tolerization with type II collagen induces interleukin-4-and interleukin-10-producing CD4+ T cells. Immunology. 1999;97:466–473.PubMedCrossRefGoogle Scholar
  179. 179.
    Bar-Or A, Vollmer T, Antel J, et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol. 2007;64:1407–1415.PubMedCrossRefGoogle Scholar
  180. 180.
    Tutaj M, Szczepanik M. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE). J Autoimmun. 2007;28:208–215.PubMedCrossRefGoogle Scholar
  181. 181.
    Chatila TA. Molecular mechanisms of regulatory T-cell development. Chem Immunol Allergy. 2008;94:16–28.PubMedCrossRefGoogle Scholar
  182. 182.
    Chen W, Perruche S, Li J. CD4+ CD25+ T regulatory cells and TGF-beta in mucosal immune system: the good and the bad. Curr Med Chem. 2007;14:2245–2249.PubMedCrossRefGoogle Scholar
  183. 183.
    Dubois B, Joubert G, Gomez de Aguero M, et al. Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterology. 2009;137:1019–1028.PubMedCrossRefGoogle Scholar
  184. 184.
    Hanninen A, Harrison LC. Mucosal tolerance to prevent type 1 diabetes: can the outcome be improved in humans? Rev Diabet Stud. 2004;1:113–121.PubMedCrossRefGoogle Scholar
  185. 185.
    Ishikawa H, Ochi H, Chen ML, et al. Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes. 2007;56:2103–2109.PubMedCrossRefGoogle Scholar
  186. 186.
    Ochi H, Abraham M, Ishikawa H, et al. New immunosuppressive approaches: oral administration of CD3-specific antibody to treat autoimmunity. J Neurol Sci. 2008;274:9–12.PubMedCrossRefGoogle Scholar
  187. 187.
    Perruche S, Zhang P, Liu Y, et al. CD3-specific antibody-induced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells. Nat Med. 2008;14:528–535.PubMedCrossRefGoogle Scholar
  188. 188.
    Longhi MS, Ma Y, Mitry RR, et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.PubMedCrossRefGoogle Scholar
  189. 189.
    Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+ CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol. 2006;176:4484–4491.PubMedGoogle Scholar
  190. 190.
    Longhi MS, Ma Y, Bogdanos DP, et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.PubMedCrossRefGoogle Scholar
  191. 191.
    Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology. 2006;43:729–737.PubMedCrossRefGoogle Scholar
  192. 192.
    Longhi MS, Mitry RR, Samyn M, et al. Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology. 2009;50:130–142.PubMedCrossRefGoogle Scholar
  193. 193.
    Longhi MS, Meda F, Wang P, et al. Expansion and de novo generation of potentially therapeutic regulatory T cells in patients with autoimmune hepatitis. Hepatology. 2008;47:581–591.PubMedCrossRefGoogle Scholar
  194. 194.
    Longhi MS, Ma Y, Mieli-Vergani G, Vergani D. Aetiopathogenesis of autoimmune hepatitis. J Autoimmun. 2009.Google Scholar
  195. 195.
    Zhang C, Zhang J, Tian Z. The regulatory effect of natural killer cells: do “NK-reg cells” exist? Cell Mol Immunol. 2006;3:241–254.PubMedGoogle Scholar
  196. 196.
    Tupin E, Kronenberg M. Activation of natural killer T cells by glycolipids. Methods Enzymol. 2006;417:185–201.PubMedCrossRefGoogle Scholar
  197. 197.
    Lalazar G, Preston S, Zigmond E, Ben Yaacov A, Ilan Y. Glycolipids as immune modulatory tools. Mini Rev Med Chem. 2006;6:1249–1253.PubMedCrossRefGoogle Scholar
  198. 198.
    Dennert G, Aswad F. The role of NKT cells in animal models of autoimmune hepatitis. Crit Rev Immunol. 2006;26:453–473.PubMedGoogle Scholar
  199. 199.
    Kawamura H, Aswad F, Minagawa M, Govindarajan S, Dennert G. P2X7 receptors regulate NKT cells in autoimmune hepatitis. J Immunol. 2006;176:2152–2160.PubMedGoogle Scholar
  200. 200.
    Nowak M, Stein-Streilein J. Invariant NKT cells and tolerance. Int Rev Immunol. 2007;26:95–119.PubMedCrossRefGoogle Scholar
  201. 201.
    Ma X, Qiu DK, Li EL, Peng YS, Chen XY. Effect of T-cell vaccination in murine experimental autoimmune hepatitis. Zhonghua Gan Zang Bing Za Zhi. 2004;12:44–46.PubMedGoogle Scholar
  202. 202.
    Mei Y, Wang Y, Xu L. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells. Immunol Lett. 2007;110:29–35.PubMedCrossRefGoogle Scholar
  203. 203.
    Little PF. Structure and function of the human genome. Genome Res. 2005;15:1759–1766.PubMedCrossRefGoogle Scholar
  204. 204.
    Wolfsberg TG, McEntyre J, Schuler GD. Guide to the draft human genome. Nature. 2001;409:824–826.PubMedCrossRefGoogle Scholar
  205. 205.
    Honda M, Kawai H, Shirota Y, et al. cDNA microarray analysis of autoimmune hepatitis, primary biliary cirrhosis and consecutive disease manifestation. J Autoimmun. 2005;25:133–140.PubMedCrossRefGoogle Scholar
  206. 206.
    Schumacher A, Kapranov P, Kaminsky Z, et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 2006;34:528–542.PubMedCrossRefGoogle Scholar
  207. 207.
    Yokosawa S, Yoshizawa K, Ota M, et al. A genomewide DNA microsatellite association study of Japanese patients with autoimmune hepatitis type 1. Hepatology. 2007;45:384–390.PubMedCrossRefGoogle Scholar
  208. 208.
    Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology. 2000;31:49–53.PubMedCrossRefGoogle Scholar
  209. 209.
    Hiraide A, Imazeki F, Yokosuka O, et al. Fas polymorphisms influence susceptibility to autoimmune hepatitis. Am J Gastroenterol. 2005;100:1322–1329.PubMedCrossRefGoogle Scholar
  210. 210.
    Agarwal K, Czaja AJ, Donaldson PT. A functional Fas promoter polymorphism is associated with a severe phenotype in type 1 autoimmune hepatitis characterized by early development of cirrhosis. Tissue Antigens. 2007;69:227–235.PubMedCrossRefGoogle Scholar
  211. 211.
    Fan LY, Tu XQ, Zhu Y, et al. Genetic association of cytokines polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. World J Gastroenterol. 2005;11:2768–2772.PubMedGoogle Scholar
  212. 212.
    Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.PubMedCrossRefGoogle Scholar
  213. 213.
    Fan L, Tu X, Zhu Y, et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.PubMedCrossRefGoogle Scholar
  214. 214.
    Vogel A, Strassburg CP, Manns MP. 77 C/G mutation in the tyrosine phosphatase CD45 gene and autoimmune hepatitis: evidence for a genetic link. Genes Immun. 2003;4:79–81.PubMedCrossRefGoogle Scholar
  215. 215.
    Esteghamat F, Noorinayer B, Sanati MH, et al. C77G mutation in protein tyrosine phosphatase CD45 gene and autoimmune hepatitis. Hepatol Res. 2005;32:154–157.PubMedCrossRefGoogle Scholar
  216. 216.
    Aqel BA, Machicao V, Rosser B, et al. Efficacy of tacrolimus in the treatment of steroid refractory autoimmune hepatitis. J Clin Gastroenterol. 2004;38:805–809.PubMedCrossRefGoogle Scholar
  217. 217.
    Malekzadeh R, Nasseri-Moghaddam S, Kaviani MJ, et al. Cyclosporin A is a promising alternative to corticosteroids in autoimmune hepatitis. Dig Dis Sci. 2001;46:1321–1327.PubMedCrossRefGoogle Scholar
  218. 218.
    Aw MM, Dhawan A, Samyn M, Bargiota A, Mieli-Vergani G. Mycophenolate mofetil as rescue treatment for autoimmune liver disease in children: a 5-year follow-up. J Hepatol. 2009;51:156–160.PubMedCrossRefGoogle Scholar
  219. 219.
    Wiegand J, Schuler A, Kanzler S, et al. Budesonide in previously untreated autoimmune hepatitis. Liver Int. 2005;25:927–934.PubMedCrossRefGoogle Scholar
  220. 220.
    Zandieh I, Krygier D, Wong V, et al. The use of budesonide in the treatment of autoimmune hepatitis in Canada. Can J Gastroenterol. 2008;22:388–392.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations