Advertisement

Digestive Diseases and Sciences

, Volume 55, Issue 8, pp 2211–2218 | Cite as

Effect of Azithromycin on Acute Inflammatory Lesions and Colonic Bacterial Load in a Murine Model of Experimental Colitis

  • Sanja PleškoEmail author
  • Marko Banić
  • Vanda Plečko
  • Branimir Anić
  • Tomislav Brkić
  • Heinzl Renata
  • Ivo Rotkvić
Original Article

Abstract

Background

The aim of this study was to investigate the effect of the macrolide antibiotic azithromycin on mucosal changes and colonic bacterial load in a murine model of colitis.

Methods

Colitis was induced in CD1 mice using enema of 0.2% solution of dinitrofluorobenzene, combined with skin sensitization. Four experimental groups of animals (N = 10 per group) were treated with 50 mg/kg/day azithromycin (AZ) or metronidazole (MN) perorally, starting 24 h before (AZ−1, MN−1) or 6 h after (AZ+1, MN+1) induction of colitis and for consecutive 5 days. Additional experimental mice group was treated with 10 mg/kg/day methylprednisolone intraperitoneally after induction of experimental colitis in the same manner (MP). Two control groups consisted of healthy animals (C) that received the challenge enema with phosphate-buffered saline (PBS) and animals with experimental colitis (chall) treated with equivolume of PBS perorally. Clinical score (0–5) and histopathologic score (0–30) were used to assess inflammatory changes, and colon washings were used to determine changes in bacterial load.

Results

The anti-inflammatory effect of azithromycin did not differ from the effect of methylprednisolone, when compared with control group with experimental colitis. Metronidazole did not show a significant anti-inflammatory effect. Number of colonic bacteria did not differ significantly between control and experimental groups of animals.

Conclusions

We documented the anti-inflammatory effect of azithromycin in a murine model of acute colitis, suggesting that effects were targeted to oxidative burst and on mucosal/bacterial interface, independent of luminal bacterial load. Further studies should be focused on effect of azithromycin on the role of bacterial biofilm in perpetuation of chronic intestinal inflammation.

Keywords

Inflammatory bowel disease Experimental colitis Inflammation Azithromycin Bacterial biofilm 

References

  1. 1.
    Sands BE. Therapy of inflammatory bowel disease. Gastroenterology. 2000;118:68–82.CrossRefGoogle Scholar
  2. 2.
    Camma C, Giunta M, Rosselli M, Cottone M. Mesalamine in the maintenance treatment of Crohn′s disease: a meta-analysis adjusted for confounding variables. Gastroenterology. 1997;113:1465–1473.CrossRefPubMedGoogle Scholar
  3. 3.
    Steinhart AH, Feagan BG, Wong CJ, et al. Combined budesonide and antibiotic therapy for active Crohn’s disease: a randomized controlled trial. Gastroenterology. 2002;123(1):33–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Greenbloom SL, Steinhart AH, Greenberg GR. Combination ciprofloxacin and metronidazole for active Crohn’s disease. Can J Gastroenterol. 1998;12(1):53–56.PubMedGoogle Scholar
  5. 5.
    Labro MT. Anti-inflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother. 1998;41(Suppl 13):37–46.CrossRefPubMedGoogle Scholar
  6. 6.
    Shafran I, Kugler L, El-Zaatari FA, Naser SA, Sandoval J. Open clinical trial of rifabutin and clarithromycin therapy in Crohn’s disease. Dig Liver Dis. 2002;34(1):22–28.CrossRefPubMedGoogle Scholar
  7. 7.
    Allen SD, Emery CL, Siders JA. Clostridium. U:Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology Washington DC: ASM; 1999, pp 654–671.Google Scholar
  8. 8.
    Brkić T, Banić M, Anić B, et al. A model of inflammatory bowel disease induced by 2, 4-dinitrofluorobenzene in previously sensitized BALB-c mice. Scand J Gastroenterol. 1992;27:184–188.CrossRefPubMedGoogle Scholar
  9. 9.
    Banić M, Brkić T, Anić B, et al. Effect of methylprednisolone on small bowell, spleen and liver changes in a murine model of inflammatory bowel disease. Aliment Pharmacol Ther. 1993;7:201–206.PubMedGoogle Scholar
  10. 10.
    Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC, eds. The Anaerobic Bacteria Color atlas and textbook of Diagnostic Microbiology. Philadelphia: Lippincott; 1997:709–784.Google Scholar
  11. 11.
    Hunter MM, Wang A, Hirota CL, McKay DM. Neutralizing Anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J Immunol. 2005;174:7368–7375.PubMedGoogle Scholar
  12. 12.
    Anić B, Brkić T, Banić M, et al. Histopathologic features of T-cell mediated colonic injury induced with 2, 4-dinitrofluorobenzene in BALB/c mice. Acta Med Croat. 1997;51:11–14.Google Scholar
  13. 13.
    Banic M, Anic B, Brkic T, et al. Effect of cyclosporine in a murine model of experimental colitis. Dig Dis Sci. 2002;47(6):1362–1368.CrossRefPubMedGoogle Scholar
  14. 14.
    Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC, eds. Introduction to microbiology: Part I: The role of the Microbiology Laboratory in the Diagnosis of Infectious Diseases:Guidelines to Practice and Management. Color atlas and textbook of Diagnostic Microbiology. Philadelphia: Lippincott; 1997:69–120.Google Scholar
  15. 15.
    Jousimies-Somer HR, Summanen PH, Finegold SM. Bacteroides, Porphyromonas, Prevotella, Fusobacterium, and Other Anaerobic Gram-Negative Rods and Cocci. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology. Washington DC: ASM Press; 1999:690–711.Google Scholar
  16. 16.
    Hillier SL, Moncla BJ. Peptostreptococcus, Propionibacterium, Lactobacillus, Actinomyces and Other Non-Sporeforming Anaerobic Gram-Positive Bacteria. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology. Washington DC: ASM Press; 1999:672–687.Google Scholar
  17. 17.
    Dawson-Saunders B, Trapp RG. Basic and clinical biostatistics. London, New Jersey: Prentice-Hall; 1994.Google Scholar
  18. 18.
    Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.CrossRefPubMedGoogle Scholar
  19. 19.
    Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–1367.CrossRefPubMedGoogle Scholar
  20. 20.
    Xiao WB, Liu YL. Changes of CD8+CD28- T regulatory cells in rat model of colitis induced by 2, 4-dinitrofluorobenzene. World J Gastroenterol. 2003;9(11):2528–2532.PubMedGoogle Scholar
  21. 21.
    Barnich Nicolas, Darfeuille-Michaud Arlette. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol. 2007;13(42):5571–5576.PubMedGoogle Scholar
  22. 22.
    Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol. 1997;148:567–576.CrossRefPubMedGoogle Scholar
  23. 23.
    Blondeau JM, DeCarolis E, Metzler KL, Hansen GT. The macrolides. Expert Opin Investig Drugs. 2002;11(2):189–215.CrossRefPubMedGoogle Scholar
  24. 24.
    Labro MT. Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy tales”? Clin Microbiol Rev. 2000;13(4):615–650.CrossRefPubMedGoogle Scholar
  25. 25.
    Parnham MJ, Čulic O, Eraković V, et al. Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment. Eur J Pharmacol. 2005;517:132–143.CrossRefPubMedGoogle Scholar
  26. 26.
    Labro MT. Interactions entre les agents anti-infectieux et les phagocytes. Presse Med. 1995;24:992–998.PubMedGoogle Scholar
  27. 27.
    Rennick DM, Fort MM. Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10(-/-) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2000;278(6):G829–G833.PubMedGoogle Scholar
  28. 28.
    Arabi Y, Dimock F, Burdon DW, Alexander-Wiliams J, Keighley MR. Influence of neomycin and metronidazole on colonic microflora of volunteers. J Antimicrob Chemother. 1979;5:531–537.CrossRefPubMedGoogle Scholar
  29. 29.
    Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol. 1997;148:567–576.CrossRefPubMedGoogle Scholar
  30. 30.
    Mahgoub A, El-Medany A, Mustafa A, Arafah M, Moursi M. Azithromycin and erythromycin ameliorate the extent of colonic d+amage induced by acetic acid in rats. Toxicol Appl Pharmacol. 2005;205(1):43–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Menozzi A, Pozzoli C, Poli E, et al. Effect of the macrolide antibacterial drug, tylosin, on TNBS-induced colitis in the rat. Pharmacology. 2005;74(3):135–142.CrossRefPubMedGoogle Scholar
  32. 32.
    Yamada T, Deitch E, Specian RD, Perry MA, Sartor RB, Grisham MB. Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation. 1993;17:641–662.CrossRefPubMedGoogle Scholar
  33. 33.
    Matute AJ, Schurink CA, Krijnen RM, Florijn A, Rozenberg-Arska M, Hoepelman IM. Double-blind, placebo-controlled study comparing the effect of azithromycin with clarithromycin on oropharyngeal and bowel microflora in volunteers. Eur J Clin Microbiol Infect Dis. 2002;21(6):427–431.CrossRefPubMedGoogle Scholar
  34. 34.
    Canbakan B, Sentürk H, Tahan V, Yildirim B, Özbay G, Hatemi I, Oktay E: Neutrophil oxidative burst: A possible pathogenic mechanism for tissue damage in ulcerative colitis. Abstract book. Inflammatory bowel disease: Translation from basic research to clinical practice, Dubrovnik: Falk Symposium 140; 2004, A43.Google Scholar
  35. 35.
    Rainis T, Maor I, Lanir A, Lavy A. Oxidative stress and neutrophil superoxide release in patients with Crohn’s disease: Distinction between active and non-active disease. Abstract book. Inflammatory bowel disease: Translation from basic research to clinical practice, Dubrovnik: Falk Symposium 140; 2004, A44.Google Scholar
  36. 36.
    Popovic M, Janicijevic-Hudomal S, Kaurinovic B, Rasic J, Trivic S. Antioxidant effects of some drugs on ethanol-induced ulcers. Molecules. 2009;14:816–826.CrossRefPubMedGoogle Scholar
  37. 37.
    Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–3389.CrossRefPubMedGoogle Scholar
  38. 38.
    Barnich N, Darfeuille-Michaud A. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol. 2007;13(42):5571–5576.PubMedGoogle Scholar
  39. 39.
    Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31(1):12–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Macfarlane S, Dillon JF. Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol. 2007;102(5):1187–1196.CrossRefPubMedGoogle Scholar
  41. 41.
    Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31(1):12–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sanja Pleško
    • 1
    Email author
  • Marko Banić
    • 2
  • Vanda Plečko
    • 1
  • Branimir Anić
    • 3
  • Tomislav Brkić
    • 4
  • Heinzl Renata
    • 5
  • Ivo Rotkvić
    • 1
    • 2
  1. 1.Department for Clinical and Molecular MicrobiologyClinical Hospital CenterZagrebCroatia
  2. 2.Division of GastroenterologyUniversity Hospital “Dubrava”ZagrebCroatia
  3. 3.Division of Rheumatology and Clinical ImmunologyClinical Hospital CenterZagrebCroatia
  4. 4.Division of GastroenterologyClinical Hospital CenterZagrebCroatia
  5. 5.Division of PathologyUniversity Hospital “Dubrava”ZagrebCroatia

Personalised recommendations