Advertisement

Digestive Diseases and Sciences

, Volume 55, Issue 4, pp 1120–1127 | Cite as

Increased Oxidative Stress, Decreased Total Antioxidant Capacity, and Iron Overload in Untreated Patients with Chronic Hepatitis C

  • Danielle Venturini
  • Andréa Name Colado Simão
  • Décio Sabbatini Barbosa
  • Edson Lopes Lavado
  • Victor Emanuel Soares Narciso
  • Isaias Dichi
  • Jane Bandeira DichiEmail author
Original Article

Abstract

The aim of this study was to determine oxidative stress in patients with untreated chronic hepatitis C (CHC), relating the obtained results with iron status and disease activity markers. Two groups (CHC patients and controls) were studied. CHC patients presented significantly higher values than the control group in some parameters: ALT, AST, GGT, iron, ferritin, and transferrin saturation, and also in tert-butyl hydroperoxide initiate chemiluminescence and thiobarbituric acid-reactive substances (TBARS) as well as lower values in total radical-trapping antioxidant parameter (TRAP). TBARS showed a significant correlation with serum AST and with transferrin saturation, whereas TRAP correlated inversely with serum albumin. Serum ferritin correlated with ALT and GGT, whereas serum iron did so with GGT. In conclusion, lower antioxidant capacity, higher levels of pro-oxidants activity, and iron overload occur in untreated patients with CHC. This greater oxidative activity could play an important role in pathogenesis and evolution of hepatitis C and thus further investigations.

Keywords

Hepatitis C virus Oxidative stress Antioxidant capacity Iron status 

References

  1. 1.
    Lauer G, Walker BD. Hepatitis C virus infection. N Engl J Med. 2001;345:41–52. doi: 10.1056/NEJM200107053450107.CrossRefPubMedGoogle Scholar
  2. 2.
    De Maria N, Colantoni A, Fagiuoli S, et al. Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic Biol Med. 1996;21:291–295. doi: 10.1016/0891-5849(96)00044-5.CrossRefPubMedGoogle Scholar
  3. 3.
    Koike K, Miyoshi H. Oxidative stress and hepatitis C viral infection. Hepatol Res. 2006;34:65–73. doi: 10.1016/j.hepres.2005.11.001.CrossRefPubMedGoogle Scholar
  4. 4.
    Levent G, Ali A, Ahmet A, et al. Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy. J Transl Med. 2006;4:25–30. doi: 10.1186/1479-5876-4-25.CrossRefPubMedGoogle Scholar
  5. 5.
    Reiss CS, Komatzu T. Does nitric oxide play a critical role in viral infections? J Virol. 1998;72:4547–4551.PubMedGoogle Scholar
  6. 6.
    Curran RD, Billiar TR, Stuehr DJ, et al. Multiples cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg. 1990;212:462–469. doi: 10.1097/00000658-199010000-00009.CrossRefPubMedGoogle Scholar
  7. 7.
    Geller DA, DiSilvio M, Nussler AK, et al. Nitric oxide synthase expression is induced in hepatocytes in vivo during hepatic inflammation. J Surg Res. 1993;55:427–432. doi: 10.1006/jsre.1993.1164.CrossRefPubMedGoogle Scholar
  8. 8.
    Kandemir Ö, Polat A, Kaya A. Inducible nitric oxide synthase expression in chronic viral hepatitis and its relation with histological severity of disease. J Viral Hepat. 2002;9:419–423. doi: 10.1046/j.1365-2893.2002.00382.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Arber N, Konikoff FM, Moshkowitz M, et al. Increased serum iron and iron saturation without liver iron accumulation distinguish chronic hepatitis C from other chronic liver diseases. Dig Dis Sci. 1994;39:2656–2659. doi: 10.1007/BF02087705.CrossRefPubMedGoogle Scholar
  10. 10.
    Di Bisceglie AM, Bonkovsky HL, Chopra S, et al. Iron reduction as an adjuvant to interferon therapy in patients with chronic hepatitis C who have previously not responded to interferon: A multicenter, prospective, randomized, controlled trial. Hepatology. 2000;32:135–138. doi: 10.1053/jhep.2000.8700.CrossRefPubMedGoogle Scholar
  11. 11.
    Iwasa M, Iwata K, Kaito M, et al. Efficacy of long-term dietary restriction of total calories, fat, iron, and protein in patients with chronic hepatitis C. Nutrition. 2004;20:368–371. doi: 10.1016/j.nut.2003.12.009.CrossRefPubMedGoogle Scholar
  12. 12.
    Kugelman A, Choy HA, Liu R, Shi MM, Gozal E, Forman HJ. Gamma-glutamyl transpeptidase is increased by oxidative stress in rat alveolar L2 epithelial cells. Am J Respir Cell Mol Biol. 1994;11:586–592.PubMedGoogle Scholar
  13. 13.
    Lee DH, Blomhoff R Jr, Jacobs DR. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res. 2004;38:535–539. doi: 10.1080/10715760410001694026.CrossRefPubMedGoogle Scholar
  14. 14.
    Jain SK, Pemberton PW, Smith A, et al. Oxidative stress in chronic hepatitis C: not just a feature of late stage disease. J Hepatol. 2002;36:805–811. doi: 10.1016/S0168-8278(02)00060-0.CrossRefPubMedGoogle Scholar
  15. 15.
    Yadav D, Hertan HI, Schweitzer P, Norkus EP, Pitchumoni CS. Serum and liver micronutrient antioxidants and serum oxidative stress n patients with chronic hepatitis C. Am J Gastroenterol. 2002;97:2634–2639. doi: 10.1111/j.1572-0241.2002.06041.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med. 2000;29:1106–1114. doi: 10.1016/S0891-5849(00)00394-4.CrossRefPubMedGoogle Scholar
  17. 17.
    Repetto M, Reides C, Carretero MLG, Costa M, Griembertg G, Llesuy S. Oxidative stress in blood of HIV infected patients. Clin Chim Acta. 1996;255:107–117. doi: 10.1016/0009-8981(96)06394-2.CrossRefPubMedGoogle Scholar
  18. 18.
    Flecha BG, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, Liver, and muscle. Free Radic Biol Med. 1991;10:93–100. doi: 10.1016/0891-5849(91)90002-K.CrossRefGoogle Scholar
  19. 19.
    Jentzsch AM, Bachmann H, Fürst P, Biesalski HK. Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med. 1996;20:251–256. doi: 10.1016/0891-5849(95)02043-8.CrossRefPubMedGoogle Scholar
  20. 20.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thibarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3.CrossRefPubMedGoogle Scholar
  21. 21.
    Guevara I, Iwanejko J, Dembinska-Kiéc A, et al. Determination of nitrito/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta. 1998;274:177–188. doi: 10.1016/S0009-8981(98)00060-6.CrossRefPubMedGoogle Scholar
  22. 22.
    Parola M, Robino G. Oxidative stress related molecules and liver fibrosis. J Hepatol. 2001;35:297–306. doi: 10.1016/S0168-8278(01)00142-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Cecchini R, Aruoma OI, Halliwell B. The action of hydrogen peroxide on the formation of thiobarbituric acid-reactive material from microsomes or from DNA damage by bleomycin or o-phenanthroline. Artefacts in the thiobarbituric acid test. Free Radic Res Commun. 1990;10:245–258. doi: 10.3109/10715769009149893.CrossRefPubMedGoogle Scholar
  24. 24.
    Casado MF, Cecchini AL, Simão ANC, Oliveira RD, Cecchini R. Free radical-mediated pre-hemolytic injury in human red blood cells subjected to lead acetate as evaluated by chemiluminescence. Food Chem Toxicol. 2007;45:945–952. doi: 10.1016/j.fct.2006.12.001.CrossRefPubMedGoogle Scholar
  25. 25.
    Kato J, Kobune M, Nakamura T, et al. Normalization of elevated hepatic 8-hydroxy-2-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res. 2001;61:8697–8702.PubMedGoogle Scholar
  26. 26.
    Basset SE, Di Bisceglie AM, Bacon BR, et al. Effects of iron loading on pathogenicity in hepatitis C virus-infected chimpanzees. Hepatology. 1999;29:1884–1892. doi: 10.1002/hep.510290623.CrossRefGoogle Scholar
  27. 27.
    National Center for Health Statistics. Third National Health and Nutrition Examination Survey, 1988–94. Center for Disease Control and prevention, 1996. http://www.healthyarkansas.com/services/C_training/edu/glossary/defalt.htm.
  28. 28.
    Kawamura Y, Akuta N, Sezaki H, et al. Determinants of serum ALT normalization after phlebotomy in patients with chronic hepatitis C infection. J Gastroenterol. 2005;40:901–906. doi: 10.1007/s00535-005-1636-6.CrossRefPubMedGoogle Scholar
  29. 29.
    Alexander J, Tung BY, Croghan A, Kowdley KV. Effect of iron depletion on serum markers of fibrogenesis, oxidative stress and serum liver enzymes in chronic hepatitis C: results of a pilot study. Liver Int. 2007;27:268–273. doi: 10.1111/j.1478-3231.2007.01449.x.CrossRefPubMedGoogle Scholar
  30. 30.
    Radisky DC, Kaplan J. Iron in cytosolic ferritin can be recycled through lysossomal degradation in human fibroblasts. Biochem J. 1998;336:201–205.PubMedGoogle Scholar
  31. 31.
    Kakholon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 2002;33:1037–1046. doi: 10.1016/S0891-5849(02)01006-7.CrossRefGoogle Scholar
  32. 32.
    Tavil AS. Diagnosis and management of hemochromatosis. Hepatology. 2001;33:1321–1328. doi: 10.1053/jhep.2001.24783.CrossRefGoogle Scholar
  33. 33.
    Simão ANC, Dichi JB, Barbosa DS, Cecchini R, Dichi I. Influence of uric acid and γ -glutamyltransferase on total antioxidant capacity and oxidative stress in patients with metabolic syndrome. Nutrition. 2008;24:675–681. doi: 10.1016/j.nut.2008.03.021.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang H, Liu H, Iies KE, et al. 4-Hydroxynonenal induces rat γ-glutamyl transpeptidase through mitogen-activeted protein kinase-mediated electrophile response element/nuclear factor erythroyd 2–related factor 2 signaling. Am J Respir Cell Mol Biol. 2006;34:174–181. doi: 10.1165/rcmb.2005-0280OC.CrossRefPubMedGoogle Scholar
  35. 35.
    Stark AA, Russel JJ, Langenbach R, Pagano DA, Zeiger E, Huberman E. Localization of oxidative damage by glutathione-gamma-glutamyl transpeptidase system in preneoplasic lesions in sections of liver from carcinogen-treated rats. Carcinogenesis. 1994;15:343–348. doi: 10.1093/carcin/15.2.343.CrossRefPubMedGoogle Scholar
  36. 36.
    Drozdz R, Parmentier C, Hachad H, Leroy P, Siest G, Wellman M. Gamma-glutamyl transferase dependent generation of reactive oxygen species from a glutathione/transferrin system. Free Radic Biol Med. 1998;25:786–792. doi: 10.1016/S0891-5849(98)00127-0.CrossRefPubMedGoogle Scholar
  37. 37.
    Majano PL, Garcia-Monzon C, Lopez-Cabrera M, et al. Inducible nitric oxide synthase expression in chronic viral hepatitis. J Clin Invest. 1998;101:1343–1352. doi: 10.1172/JCI774.CrossRefPubMedGoogle Scholar
  38. 38.
    Amaro MJ, Bartolome J, Pardo M, Cotonat T, Lopez-Farre A, Carreno V. Decreased nitric oxide production in chronic viral hepatitis B and C. J Med Virol. 1997;51:326–331. doi: 10.1002/(SICI)1096-9071(199704)51:4<326::AID-JMV11>3.0.CO;2-G.CrossRefPubMedGoogle Scholar
  39. 39.
    Hokari A, Zeniya M, Hiroyasu E, Ishikawa T, Kurasima Y, Toda G. Role of nitric oxide(NO) in interferon-alpha therapy for hepatitis C. J Infect. 2005;51:47–53. doi: 10.1016/j.jinf.2004.08.025.CrossRefPubMedGoogle Scholar
  40. 40.
    Tankurt E, Kirkali G, Ozcan MA, Mersin N, Ellidokuz E, Akpinar HA. Increased serum nitrite and nitrate concentrations in chronic hepatitis. J Hepatol. 1998;29:543–544. doi: 10.1016/S0168-8278(98)80077-9.CrossRefGoogle Scholar
  41. 41.
    Garcia-Monzón C, Majano PL, Zubia I, Sanz P, Apolinario A, Monero-Otero R. Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. J Hepatol. 2000;32:331–338. doi: 10.1016/S0168-8278(00)80080-X.CrossRefPubMedGoogle Scholar
  42. 42.
    Zamora R, Vodovotz Y, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Mol Med. 2000;6:347–373.PubMedGoogle Scholar
  43. 43.
    Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78:6858–6862. doi: 10.1073/pnas.78.11.6858.CrossRefPubMedGoogle Scholar
  44. 44.
    Mayer M. Association of serum bilirrubin concentration with risk of coronary artery disease. Clin Chem. 2000;46:1723–1727.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Danielle Venturini
    • 1
  • Andréa Name Colado Simão
    • 1
  • Décio Sabbatini Barbosa
    • 1
  • Edson Lopes Lavado
    • 2
  • Victor Emanuel Soares Narciso
    • 3
  • Isaias Dichi
    • 3
  • Jane Bandeira Dichi
    • 3
    Email author
  1. 1.Department of Pathology, Clinical Analysis and ToxicologyUniversity of LondrinaLondrinaBrazil
  2. 2.Department of PhysiotherapyUniversity of LondrinaLondrinaBrazil
  3. 3.Department of Internal MedicineUniversity of LondrinaLondrinaBrazil

Personalised recommendations